3.3 三相电缆的电鳡
主要计算中低压三相电缆三芯排列为“品”字形电缆。根据电磁场理论,三芯电缆工作电鳡为:
L=Li+2ln(2S/Dc) ×10-7
式中:
L——单位长度电鳡,H/m;
S——电缆中心间的距离,m;
若三芯电缆电缆中心间的距离不等距,或单芯三根品字时三相回路电缆的电鳡按下式计算:
式中:
S1、S2、S3——电缆各相中心之间的距离,m。
4. 电缆金属护套的电鳡
4.1三角
三根单芯电缆按等边三角形敷设的三相平衡负载交流回路,护套开路,超高压电缆,每相单位长度电缆金属护套的电鳡为:
Ls=2ln(S/rs) ×10-7 ( H/m)
式中:
rs——电缆金属护套的平均半径,m。
4.2等距直线
三根单芯电缆按等距离平面敷设的三相平衡负载交流回路,护套开路,每相单位长度电缆金属护套的电鳡为:
对于中间B相:
LSB=2ln(S/rs) ×10-7 ( H/m)
对于A相:
LSA=2ln(S/rs) ×10-7 -α(2ln2 )×10-7 (H/m)
对于C相:
LSC=2ln(S/rs)×10-7 -α2(2ln2 )×10-7 (H/m)
式中:
三相平均值:
LS=2ln(S/rs)×10-7 +2/3?ln2 ×10-7 (H/m)







高压电缆
4.4试验判断
不发生击穿。
4.5检测部位
非金属护套与接头外护层(对外护层厚度2mm以上,表面涂有导电层者,基本上即对110kV及以上电压等级电缆进行)。
对于交叉互联系统,直流耐压试验在交叉互联系统的每一段上进行,试验时将电缆金属护层的交叉互联连接断开,被试段金属护层接直流试验电压,互联箱中另一侧的非被试段电缆金属护层接地,绝缘接头外护套、互联箱段间绝缘夹板、引线同轴电缆连同电缆外护层一起试验。
交叉互联接地方式A相第壹段外护层直流耐压试验原理接线图
4.7典型缺陷及缺陷分析
序号①缺陷属典型施工问题,超高压电缆参数,故障点**后,施工方即说明该处电缆曾经被铁锹扎伤过,经处理后试验即通过,这一缺陷暴露了施工管理存在的问题。
序号②同类绝缘接头安装错误在两回电缆中发现了4处,反映出附件安装人员水平较低,外护套试验检测出缺陷避免了类似序号⑤运行故障的发生。
序号③缺陷原因也在于施工管理不严格,序号④缺陷原因在于附件安装质量差。
序号⑤为某单位一起110kV电缆故障实例,同时暴露出附件安装与交接试验两方面都存在问题。
首先,厂家工艺要求不合理,电缆预制件的铜编织带外层只要求一层半搭绝缘带,深圳220kv超高压电缆,而且预制件在铜壳内严重偏心,导致绝缘裕度不够。
其次,在电缆外护层直流10kV/1min耐压试验时,超高压电缆电压等级,试验电压把仅有的一层绝缘带击穿,但试验时互联箱中另一侧非被试段金属护层未接地,导致缺陷未及时被发现。
带电运行后,绝缘接头内部导通,造成电缆护套交叉互联系统失效,护套产生约几十安培感应电流。电流流过接头的铜编织与铜壳接触处,产生的热量将中间接头预制件烧融,烧融区域*坏了橡胶预制件的应力锥的绝缘性能,场强严重畸变,接头被瞬间击穿,导体对铜壳放电,导致线路跳闸。
5. 测量金属屏蔽层电阻和导体电阻比
5.1试验目的
. 电缆沟(隧道)附属设施
3.1电缆沟盖板制作
工艺标准
(1) 盖板为钢筋混凝土预制件,其尺寸应严格配合电缆沟尺寸。
(2) 表面应平整,四周宜设置预埋的护口件。
(3) 一定数量的盖板上应设置供搬运、安装用的拉环。
(4) 拉环宜能伸缩。
(5) 电缆沟盖板间的缝隙应在5mm左右。
设计要点
(1)盖板尺寸应根据电缆沟尺寸确定。
(2)沟沿铺设盖板的位置应设置护口件。
施工要点
(1)盖板宜按照图纸要求进行工厂化预制。
(2)预埋的护口件宜采用热镀锌角钢。
(3)混凝土和钢筋应满足相关的强度等级要求和布置要求。
(4)盖板敷设后应保证时无响声,表面无积水。
(5)电缆沟盖板下应设置橡胶垫片。盖板四周槽钢一般涂两层底漆,两层黑色面漆。
监理要点
(1)盖板表面应平整,护口件应采用镀锌处理。
(2)电缆购盖板应设置橡胶垫片。
(3)保证安装后牢固、时无声响,表面无积水。


深圳220kv超高压电缆-超高压电缆-长能电力电缆批发由中山长能电力技术有限公司提供。中山长能电力技术有限公司拥有很好的服务与产品,不断地受到新老用户及业内人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟**图标,可以直接与我们**人员对话,愿我们今后的合作愉快!