







真空镀膜技术在光学仪器中的应用

人们熟悉的光学仪器有望远镜、显微镜、照相机、测距仪、以及日常生活用品中的镜子、眼镜、放大镜等。它们都离不开镀膜技术,镀制的薄膜有反射膜、增透膜和吸收膜等几种。
一般光学仪器中的光学系统都由多个透镜组成,光线要经玻璃界面,会有相当多的光线被反射掉,透过的光线很少,影响光学仪器的光学效果。为了减少反射损耗,增大光线的透过率,往往在玻璃表面沉积增透膜来提高光的透过率。反射膜与增透膜相反,反射膜要求把入射光大部分或几乎全部反射回去。例如:光学仪器、激光器、波导管、汽车和灯具的反射镜都需要镀反射膜。反射膜有金属膜和介质膜两种。镀制金属高反射膜常用的材料有铝、银、金、铜等。为了提高金属膜表面的抗擦损能力,往往在表面镀一层保护膜,如SiO/SiO2/Al2O3。
在激光器和多光束干涉仪反射镜上,一般沉积低吸收、高反射的全介质反射膜。其结构是在基片上交替沉积光学厚度为λ/4的高、低折射率材料的膜层。
热成型模真空镀膜机有什么优势:
热挤压模:热挤压过程中所使用的铁合金与非铁合金工具必须经受因腐蚀与超高温而产生的高成形压力,严重的磨粒磨损以及粘着磨损。HC物**相沉积涂层与HC化学气相沉积涂层展现了其高韧性,耐磨性,抗腐蚀性以及热稳定性,而这些性能恰恰能够明显地提高工具的使用效率。HC化学气相沉积涂层通常适用于拥有复杂几何图形和较大长宽比的工具。HC08,HC10或HC29涂层适用于公差要求不高的工具,而结合了渗氮处理的HC35,HC22或HC30涂层适用于公差要求很高的热挤压工具。
热锻模:热锻造过程中所使用的工具必须经受高成形压力,严重的磨粒磨损以及粘着磨损,并且需要经历要求严苛的热环境条件。另外,它们必须经受高水平的冲击,因此地提升工具性能变得更具挑战性。HC物**相沉积涂层具有高韧性,耐磨性,热稳定性以及抗擦伤性,而这些性能恰恰能够提高工具的使用效率以及铁合金与非铁合金产品的质量。
结合了渗氮处理的HC22,HC25与HC30涂层适用于热锻造工具。
真空镀膜机工作的特点

真空镀膜机工作的特点是溅射率高、基片温升低、膜-基结合力好、装置性能稳定中频设备必须加冷却水进行冷却,原因是它的频率高电流大。电流在导体流动时有一个集肤效应,电荷会聚集在电导有表面积,这样会使电导发热,所以采用中孔管做导体中间加水冷却。
冷水机能控制真空镀膜机的温度,以保证镀件的高质量。如果不配置冷水机就不能使真空镀膜机达到、率控制温度的目的,因为自然水和水塔散热都不可避免地受到自然气温的影响,而且此方式控制是极不稳定的。
