







超声波焊接压力对产品焊接效果的影响玻璃纤维增强的聚复合材料用超声波焊接,进行了试验,压力小于0.15MPa接头强度随压力增大而增加,超过0.15MPa后接头强度达到一个比较稳定的状态,约为35MPa;当焊接压力超过0.4MPa,聚会从基体中严重挤出,焊接接头强度降低。其他因素确定的情况下,一定范围内的压力能取得较优焊接强度。超声波焊接机压力调节对超声波焊接熔融区的厚度和取向程度有较大影响,焊接压力增加,熔融层厚度减小,焊接接头的取向程度增加,宏观表现为焊接压力增加,接头沿取向方向的剪切强度增加,垂直于取向方向的弯曲强度降低。焊头下降速度的影响一定的条件下,焊头下降速度越快,达到的焊接接头强度越高。在超声波焊接过程中,高的下降速度能够得到高的接触压力,有利于焊接界面紧密地接触和分子充分地扩散。使用25、50、100mm/s三种焊头下降速度来焊接HS1000,下降速度增加到100mm/s的平均焊接接头强度更高,达到28.38MPa。保压时间和保压压力的影响超声波停止后,为了使焊接试样相互紧贴固化,超声波金属焊接设备,从而使两工件能够很好地焊接在一起,需要在一定时间内保持一定的压力,所需的时间和压力就是保压时间和保压压力。保压时间和保压压力对焊接接头强度的影响是正面的,但相对于其他工艺参数,保压时问和保压压力对焊接接头强度的影响很小。
各种塑胶材料使用超音波焊接的效果分析
各种塑胶材料使用超音波焊接的效果分析结果超音波频率振动的焊头,在预定的时间及压力下,磨擦生热,令塑胶接面相互熔合,既牢固,又方便快捷,然而超音波压合对各种树脂的要求,热塑塑料使用超声波焊接的效果,其的因素包括聚合物结构,熔化温度、柔韧性(硬度)、化学结构。非结晶聚合物分子排列无序、有明显的使材料逐步变软、熔化及至流动的温度(Tg玻璃化温度)。这类树脂通常能有效传输超音速振动并在相当广泛的压力/振幅范围内,非结晶性硬质塑料,如SAN、ABS和PMMA等,对超声能量通常具有良好的透射率,焊接效果都比较好。半结晶型聚合物分子排列有序,有明显的熔点(Tm熔化温度)和再度凝固点。固态的结晶型聚合物是富有弹性的,能吸收部分高频机械振动。所以此类聚合物是不易于将超声波振动能量传至压合面,帮要求更高的振幅。需要很高的能量(高熔化热度)才能把半结晶型的结构打断从而使材料从结晶状态变为粘流状态,这也决定了这类材料熔点的明显性,熔化的材料一旦离开热源,超声波焊接设备,温度有所降低便会导致材料的迅速凝固。所以必须考虑这类材料的特殊性(例如:高振幅、接合点的良好设计、与超音夹具的有效接触、及优良的工作设备)才能取得超声波焊接的成功。而半结晶性塑料具有较强的消声作用,高频振动传输到如PA、PE和POM这样的半结晶性塑料中,超声能量很快衰减,因此半结晶性塑料超声波焊接达不到理想的效果。将单体结合在一起的过程称为“聚合”。聚合物基本可分为两大类:热塑性和热固性。热塑性材料加热成型后还可以重新再次软化和成型,基所经历的只是状态的变化而已-这种特性使决定了热塑性材料超音波压合的适应性。热固性材料是通过不可逆反的化学反应生成的,再次加热或加压均不能使已成型的热固性产品软化,28k超声波焊接设备,所以传统上一直认为热固性材料是不适合使用超音波的。对于弹性体及软质塑料,由于具有更强的吸音作用,对它们进行超声焊接不是很有效。
超声波焊接机的七大优点以往我们仅仅只是了解超声波塑料焊接机的组成及其作用,对于超声波塑料焊接机有哪些优点知之不详。超声波焊接机的七大优点:1、操作便捷—只要设置好焊接参数,操作十分便利;2、品质稳定—机械化生产,产品质量稳定可靠;3、可实现自动化焊接—15K超声波塑料焊接机非常易于实现自动化。4、经济实惠—免用大量夹具、胶合剂,减少人工,超声波铜线焊接设备,降低成本;5、超声波塑胶熔接机厂家强度高、气密性好—焊缝成分与母材一样,强度高,气密性好,不漏水,不透气;工序简洁—不需要预热,不需要清洁等前后道工序;6、快速—绝大部分超声波焊接可以在0.1-0.5秒内完成;7、美观清洁—表面成形好,不损伤不变形,无划伤及胶合剂残痕;