







静态脱敏与动态脱敏的技术路线的区别
静态脱敏直接通过屏蔽、变形、替换、随机、格式保留加密(FPE)和强加密算法(如AES)等多种脱敏算法,针对不同数据类型进行数据掩码扰乱,并可将脱敏后的数据按用户需求,装载至不同环境中。静态脱敏可提供文件至文件,文件至数据库,数据库至数据库,数据库至文件等不同装载方式。导出的数据是以脱敏后的形式存储于外部存贮介质中,实际上已经改变了存储的数据内容。
动态脱敏通过准确的解析SQL语句匹配脱敏条件,金融数据脱敏系统,例如:访问IP、MAC、数据库用户、客户端工具、操作系统用户、主机名、时间、影响行数等,在匹配成功后改写查询SQL或者拦截防护返回脱敏后的数据到应用端,从而实现敏感数据的脱敏。实际上存储于生产库的数据未发生任何变化。

数据库脱敏实现背后的秘密
数据脱敏功能,基于SQL引擎既有的实现框架,在受限用户执行查询语句过程中,实现外部不感知的实时脱敏处理。关于其内部实现,如上图所示。我们将脱敏策略(Redaction Policy)视为表对象上绑定的规则,在优化器查询重写阶段,遍历Query Tree中TargetList的每个TargetEntry,如若涉及基表的某个脱敏列,金融数据脱敏功能,且当前脱敏规则生效(即满足脱敏策略的生效条件且enable开启状态),则断定此TargetEntry中涉及要脱敏的Var对象,此时,遍历脱敏列系统表pg_redaction_column,查找到对应脱敏列绑定的脱敏函数,将其替换成对应的FuncExpr即可。
经过上述对Query Tree的重写处理,优化器会自动生成新的执行计划,执行器遵照新的计划执行,查询结果将对敏感数据做脱敏处理。带有数据脱敏的语句执行,相较于原始语句,金融数据脱敏,增加了数据脱敏的逻辑处理,势必会给查询带来额外的开销。这部分开销,主要受表的数据规模、查询目标列涉及的脱敏列数、脱敏列采用的脱敏函数三方面因素影响。

数据库脱敏技术
通常在大数据平台中,金融数据脱敏硬件设备,数据以结构化的格式存储,每个表有诸多行组成,每行数据有诸多列组成。根据列的数据属性,数据列通常可以分为以下几种类型:可确切定位某个人的列,称为可识别列,如身份号,地址以及姓名等。单列并不能定位个人,但是多列信息可用来潜在的识别某个人,这些列被称为半识别列,如邮编号,生日及性别等。美国的一份研究称,仅使用邮编号,生日和性别信息即可识别87%的美国人。包含用户敏感信息的列,如交易数额,疾病以及收入等。其他不包含用户敏感信息的列。

金融数据脱敏功能-金融数据脱敏-北京金华博通(查看)由北京金华博通信息技术有限公司提供。北京金华博通信息技术有限公司是北京 北京市 ,软件代理的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在北京金华博通领导携全体员工热情欢迎各界人士垂询洽谈,共创北京金华博通更加美好的未来。