总之,酸改性是一种经典的粘土改性方法,采用酸改性海泡石作为FCC催化材料的工作很少见报道。海泡石的酸改性脱镁历程就单位晶胞而言是从八面体层边缘位置开始逐渐向内部深入;就整个纤维体而言,是部分滑石片段单元完全脱镁引起晶内连通并向中孔发展,从而导致比表面和孔容积的增大,将其开发为FCC催化材料显然有利于进一步改善催化剂的性能。
他们指出酸改性海泡石的抗钒作用较改性前有所提高。由此可见,若要使海泡石有利于催化裂化反应,对海泡石进行酸改性增强其表面酸性,同时改性后海泡石的特殊结构和镁离子的存在有利于抗钒作用而成为很好的金属净化剂。
总之,对天然海泡石及改性海泡石微观结构的研究,前人已做了大量的工作,并对其本身所具有的催化性能做出了较为详细的解释。目前研究工作的***已转移到以海泡石为载体的催化剂的研究。金属负载于海泡石上比负载于其它载体上具有更高的活性,主要是因为海泡石具有较大的比表面和孔容积,吸附性好,结构内部有很多微孔,能使金属粒子很好地分散,使金属颗粒保持细分散状态,因而提高了催化活性。

酸处理对海泡石比表面积和孔结构的影响
利用试验得出的反应条件改性海泡石,其比表面积、孔体积和孔径分布的变化见表2-3。从表2-3的数据可以看到,在比较缓和的改性条件下,酸改性海泡石的比表面积和孔体积都有所提高。与目前FCC催化剂基质常用的高岭土相比,海泡石确实具有大的比表面积和孔体积。从表2-3还可以看到,天然海泡石的中大孔比较丰富,大于9.94 nm的孔体积为0.2272 mL/g, 经过酸处理改性后的中大孔的孔体积为0.2554 mL/g,表明酸改性后,海泡石的中大孔的孔体积进一步增加,这是由于随着改性海泡石在酸性的作用下,脱镁率增加,海泡石的微孔逐渐向中大孔扩展,晶体结构逐渐转变为硅氧四面体结构。