


山地果园自走式小型农用履带运输车除了要具有山地行驶能力外还需要在高载重情况下工作,因此对其总体设计应要求具有合理的布局和结构紧凑。在动力性方面应保证其有足够的驱动力以获得较好的加速、爬坡与越障性能,同时提高小型农用履带运输车的安全性和稳定性也极为重要。由于整车尺寸相对较小,履带底盘的尺寸也有限,因此在山区丘陵地带凹凸不平的路面行驶时比大中型履带车辆易侧翻,提高其各种负荷下的抗侧翻性能显得尤其重要。
小型农用履带运输车整车总体布置的抗侧翻设计,根据设计要求,为提高自走式小型农用履带运输车的抗侧翻性能,对整车的总体布置采取如下设计原则:
(1)采用精简化的行走系设计,行走系由整体式橡胶履带、驱动轮、支重轮、张紧轮和张紧机构组成。橡胶履带自重轻,行驶时履带上方下垂量较小,可不配托带轮。因设计速度低,仅运载货物,轻型履带运输车,设计时可省去大中型履带车辆所必须的悬架装置,以减轻整车质量,利于抗侧滑和侧翻。
(2)采用超低速齿轮式传动系设计,由两轴式变速器配合***齿轮主减速器,使履带运输车具有足够大的驱动力和超低转速输出性能,有利于提高通过性,也有利于提高抗侧翻能力。
小型农用履带运输车整车总体布置的抗侧翻设计
(3)为使整车质量分布均匀合理,适于在山地起伏不平的复杂路面上行驶、提高抗侧翻性能,必须兼顾运输车的离地高度和整车位置。底盘车架采用H型结构,将发动机和变速器置于近驱动轮方位,即车架后方的同一平台。主减速器壳体固定在车架上并置于发动机和变速器的下方。发动机通过带传动将动力传递给变速器,变速器输出轴通过齿轮传动将动力传递给主减速器***齿轮,再通过常啮合转向离合器,将动力传到半轴和履带驱动轮,实现履带运输车的行驶。运输物品的车厢位于车架中前位,使满载时运输车的前、后配重更为均匀,有利于提高抗侧翻性能。
(4)运输车扶手、换挡手柄、离合器和油门等则根据***工程学布置设计使操纵更为舒适方便。车厢尺寸根据装运水果的标准箩筐尺寸进行设计。为了增加装载体积,车厢通过伸缩板的设计使左、右和前、后方向都有不同程度的尺寸扩展,以提高果品的装载量,同时在不同装载载荷下其质心位置均有利于提高抗侧翻性能。





国内外履带运输车需求火热,行业发展趋势良好


如今履带运输车的运用很广泛,大家都知道工程履带运输车很多,其实农业中履带运输车用的也越来越多。很多厂家甚至只生产小型农用履带运输车,那这种农用履带运输车的市场前景怎么样呢?
近年来,随着进城务工人员的增多,农村青壮年劳动力缺乏。到了秋收时,多数家庭都是老弱妇孺在收割,劳动量小,秋收效率低,很难再短时间内将果实快速的运输到市场。再加上偏远山区运输设备的缺乏,使得留守人家粮食运输的问题日益突出,严重影响着种植业的发展和果农经济效益的提升。
在多数低区仍在使用农用拖拉机或者手推车在搬运粮食,但是在横向运输上仍然靠人力搬运。在有些山地、沟壑、泥泞小路等复杂地形,拖拉机还是不足够满足果农的搬运需求。面对这样的问题,我们急需一款动力机械来解决山地果园的运输问题。这种履带运输车优势在于采用履带代替轮子运行,履带的优点在于接触地面的面积大,行进时对地面压强小,不会对地面造成大的***。且履带运行科适用多种复杂地形,像田间、大棚、果园、山地、台阶、泥泞小路等各种地形,可承担各种各样的搬运工作,不用担心因地形原因而出现机器b工的现象。
履带运输车配备大马力***机,动力强劲,无视各种地形,皆可畅行无阻。载重量,足以满足绝大多数田园搬运工作。车斗两侧边门及后门皆可放平,增加了承载面积,非常实用。并且机器配备有四挡变速,三档前进,一档后退,变速档位广,使用多种地形,满足不同人群的需求,方便又实用。履带运输车具有载重量、操作简单、机动灵活、用途广泛、四挡变速、适应复杂地形等优点,拥有它,让您不再为复杂地形的繁重搬运工作而烦恼。
履带运输车解决了人工搬运费时费力的难题,不仅提高了农业生产效率,还能以极快的速度将果实运输到市场,提升了果农的经济效益。您还在为繁重的搬运工作二苦恼吗?还在为崎岖的地形和糟糕的路况而无法搬运烦恼吗?



随着计算机技术的发展,描述履带运输车动力学性能的复杂微分方程组可以快速求解,因此可以把构成履带运输车的各个部件通过各种约束组合起来,运用多体系统动力学的理论和方法求解约束方程和动力学方程,即可获得履带运输车的动力学性能。国外履带运输车动力学发展较为成熟,根据研究的目的不同,建立了平稳性分析模型,转向性分析模型和三维模型等。1976 年 Murphy N R 和 Ahlvin R B 提出了 NRMM模型,是较早的履带车模型。该模型将车体简化为刚体,将悬挂系统简化为平动弹簧阻尼元件,小型履带运输车,负重轮由周向均布的径向弹簧构成,只能作垂直运动,相邻负重轮轮心上也连接有弹簧,这样当一个负重轮相对车体有位移时,连接的弹簧将会使相邻的负重轮运动,从而体现履带对负重轮的托带作用。
履带运输车动力学性能 由于该模型细致的描述了履带运输车各个部件之间及负重轮与地面之间的相互作用关系,能够准确预估车辆的平稳性,因此被称为平稳性模型。1992 年 Ehlert W, Hug B 在试验的基础上对三类常见的转向模型—Hock 模型、IABG 模型以及 Kitano 模型进行了修正,能较好的履带运输车的转向性能,Hock 模型认转向摩擦力是由履带侧滑引起的,而 IABG 模型还考虑了转向时由于离心力引起的载荷转移,外侧履带摩擦力大于内侧等因素对转向力矩的影响,Kitano 模型不仅考虑了以上因素,还对转向时履带张力变化以及履带周向滑动的影响加以考虑。1994 年 Dhir A, Sankar S 建立了一个二维 2 N(2 为车身的垂直和俯仰,N为负重轮个数)个自由度的履带运输车模型,悬挂系统被简化为***的悬挂结构,弹簧、阻尼为线性或非线性,10吨履带运输车,假定履带为无质量连续的带子,假定地面不变形,负重轮与履带板的接触模化为连续径向弹簧阻尼结构。1998 年 Choi J H 等人运用多体动力学理论提出了一个三维履带运输车模型,
履带运输车动力学性能 该模型主要是针对低速履带运输车,它将履带运输车分解为三个运动学上解耦的子系统,子系统是由车体、主动轮、诱导轮、托带轮构成,第二、三个子系统分别为左右两侧由刚性履带板通过转动副连接而成的履带环,该模型对行驶系的作用力进行了比较细致的描述。如在分析履带与主动轮的啮合力时,将履带板和主动轮齿的接触分为齿面接触和齿根接触。由于该模型对履带结构特征刻画得非常细致,计算量也相当大。
国内的履带运输车动力学研究始于 20 世纪八十年代,同样经历了二维模型到三维模型的发展过程。1980 年,北京工业学院魏宸官建立了履带运输车匀速转向时,转向的运动学和动力学参数间的关系,给出了履带运输车转向时动力学参数的求解方法。1987 年,吉林工业大学兰凤崇建立了履带式集材车四自由度动力学模型,包括车体和座椅垂直振动,履带运输车,车体的纵向和横向角振动,但没有考虑履带的作用。1993 年,工业计算所的居乃俊应用自行开发的车辆动力学分析与模拟软件 VDAS 对履带运输车的平顺性进行了模拟分析,证明了该软件的应用价值,此时一些通用机械动力学软件如 ADAMS、DADS、DRAM 等在国外已得到一定的应用,但是在国内由于计算机软、硬件环境的不足,应用较少。2002 年,北京理工大学韩宝坤,李晓雷等基于 DADS建立了履带运输车多体模型,并对其平稳性进行了分析。
履带运输车动力学性能 2004 年,北方车辆研究所王军基于 ADAMS/ATV 建立了履带运输车整车模型,在多种路面工况下进行了仿。2005 年,北京理工大学宋晗利用 RecurDyn 建立了履带运输车的多刚体动力学模型,分析了履带动态张紧力的变化情况。此后,主流多体多体动力学软件在国内均得到了广泛应用,其中以 ADAMS/ATV 的应用***为成熟,成为了目前履带运输车动力学分析的主要工具。
济宁欧科(图)-小型履带运输车-履带运输车由济宁欧科机械设备有限公司提供。济宁欧科(图)-小型履带运输车-履带运输车是济宁欧科机械设备有限公司()今年全新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:张经理。

