ABB ICMK 14F1-M12.0(1SBP260051R1001)
异步电动机具有结构简单、运行可靠、维护方便等优点而得到广泛使用。对异步电动机拖动系统进行变频调速节能改造时,可不更换原电动机,而在电动机与电源之间串入相配套型号变频器,即可实现异步电动机转速的调节。但由于变频器是非线性设备,运行中必然会产生高次谐波而对电动机造成不良影响。
按常规设计的异步电动机,均设计在额定频率和额定电压下运行的,只有瞒住运行条件才能确保电动机轴上输出转矩、输出功率达到额定值。然而在变频调速工况下运行的电动机,其输入电流的频率是个变量,通过改变输入电流的频率即可实现异步电动机转速的调节。但由于输入电流频率的变化,故对电动机输出的轴功率会造成影响。所以对不同拖动系统电动机容量的选择上,应考虑这种影响而有一定的容量裕度。
通常使用中异步电动机,均在额定功率和允许温升条件下运行,其温升是不容易超过规定值。但在变频调速工况下运行的异步电动机,由于输入电流含有颇丰的高次谐波,因为会因谐波电***生附加损耗。同时因谐波电流影响,而使输出轴功率有所下降,运行效率降低,温升***等异常情况。异步电动机运行中,若发生温升***必将导致线圈绝缘的挥发和降解加速,介电强度和体积电阻率下降,还会造成绝缘的炭化而丧失绝缘功能。另外,谐波电***生的附加磁场,相对于转轴是高速度旋转的,它产生的轴电势较高,会击穿轴承的油膜,使轴电流流过轴承而造成损害。
异步电动机的线圈间存在着分布电容,高次谐波电压输入时,使各线圈之间的电压分担不均匀,导致承担高电压线圈绝缘老化加速,从而使首匝线圈绝缘损伤。在变频调速拖动系统中,变频器输出电压的幅值是额定电压的3倍,再加上变频器电压变化率(du/dt)很高,它所引起的振荡使电动机线圈收到应力变得更大,导致线圈绝缘老化。在开关频率很高工况下,变频器和电动机之间连接电缆,若是长度过长时会产生驻波,将导致电动机端电压的升高,这种高电压也会加速线圈绝缘的老化,而影响电动机的使用寿命。
软启动器主回路采用晶闸管,通过逐步改变晶闸管的导通角来抬升电压,完成启动过程,这是软启动器的基本原理。在低压软启动器市场,产品繁多,而高压软启动器产品却还是比较少。高压软启动器与低压软启动器的基本原理是一样的,但是高压软启动器与低压软启动器对比,有以下几方面的区别:
(1)高压软启动器在高压环境下工作,各种电气元器件的绝缘性能一定要好,电子芯片的抗干扰能力要强。高压软起动器组成电气柜时,电气元器件的布局以及与高压软启动器与其它电气设备的连接也是非常重要的。
(2)高压软启动器必须有一个高性能的控制核心,能对信号进行及时和快速地处理。因此这个控制核心一般采用高性能的DSP芯片,而不是低压软启动器的普通单片机芯。低压软启动器主回路由三组反并联的晶闸管组成。而在高压软启动器中,由于单只高压晶闸管的耐压能力不够,所以必须由多个高压晶闸管串联进行分压。但是每个晶闸管的性能参数没有完全一致。晶闸管参数的不一致,会导致晶闸管开通时间不一致,从而导致晶闸管的损坏。因此在晶闸管的选配上,必须保证每一相的晶闸管参数尽可能地一致,并且每一相晶闸管的RC滤波电路的元件参数尽可能一致。
(3)高压软起动器的工作环境容易受到各种电磁干扰,因此触发信号的传递必须安全可靠。高压软起动器中,传递触发信号,一般采用光纤传输,能有效地避免各种电磁干扰。通过光纤传递信号,也有两种方式:一种多光纤方式,一种单光纤方式。多光纤方式即每块触发板有一路光纤;单光纤方式即每一相只有一路光纤,信号传递到一块主触发板,再由主触发板传递到同一相的其他触发板。由于各路光纤光电传输过程中损耗不尽一致,因此从触发一致性上看,单光纤的方式比多光纤可靠。
(4)高压软启动器对信号的检测比低压软启动器要求更高。高压软起动器所在的环境存在着大量的电磁干扰,并且高压软启动器所用的真空接触器和真空断路器在其分断和闭合过程中会产生大量的电磁干扰。所以对检测到的信号不仅要进行硬件滤波,也要进行软件滤波,去掉干扰信号。
(5)软启动器在完成启动过程后,要切换到旁路运行状态,如何平滑地切换到运行状态,这也是软启动器的一个难点,如何选准旁路点非常重要。旁路点早了,电流冲击非常大,即使在低压条件下,也会造成三相电源中断路器跳闸,甚至会损坏断路器。高压条件下危害更大。旁路点迟了,电机抖动得厉害,影响负载正常工作。因此,旁路信号的硬件检测电路必须非常***,并且程序处理也要恰到好处。