




人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2006年,美国已经要求和它有出入免签证协议的***在10月26日之前必须使用结合了人脸识别的电子***系统,到 2006年底已经有50多个***实现了这样的系统。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态***补偿, 人脸追zong侦测,自动调整影像放大。
人脸识别被认为是生物特征识别领域甚至人工智能领域***困难的研究课题之一。人脸识别系统的困难主要是人脸作为生物特征的特点所带来的。相似性不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器guan的结构外形都很相似。这样的特点对于利用人脸进行***是有利的,但是对于利用人脸区分人类个体是不利的。易变性人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。在人脸识别中,第1类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第1类变化为类间变化(inter-class difference),而称第二类变化为类内变化(intra-class difference)。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。用户配合度现有的人脸识别系统在用户配合、采集条件比较理想的情况下可以取得令人满意的结果。但是,在用户不配合、采集条件不理想的情况下,现有系统的识别率将陡然下降。比如,人脸比对时,与系统中存储的人脸有出入,例如剃了胡子、换了发型、多了眼镜、变了表情都有可能引起比对失败。也就是说,人如果发生较大变化,系统可能就会认证失败。光照、姿态、装饰等,对机器识别人脸都有影响。
人脸识别,已成趋势。关于人脸识别各种碎片式的报道早已屡见不鲜,有的仍在稳步推广,有的早已悄然落幕。不过,在探讨一项技术是否具有实现大规模应用的能力时,我们必须要从技术和商业模式两个维度来思考。我国的《网络安全法》明确将个人生物特征识别信息纳入个人信息的范围,但对于信息的使用、存储、运输和管理仍需进一步细化。
人脸识别技术在教育行业的应用前景广阔。譬如,在教学场景中,人脸识别技术通过对学员面部表情的识别,可以判断哪些学员走神、瞌睡,并及时做出提醒;它还可以通过情绪识别判断出学员听课是否存在困难、哪些学员能够轻松接受等,进而因材施教,为学员提供个性化的学习方案。