




催化氧化燃烧利用转轮经过脱附区后,VOCs 进入脱附管路,经过脱附风机进入换热器换热,催化燃烧产生的部分热量经过换热被VOCs重新带入催化燃烧器内,加热升温进行催化剂催化处理,催化燃烧技术可以在较低温度(300℃~500℃)下实现对VOCs95%以上净化效率,完全反应后生成CO2和H2O,同时放出大量热,产生的热量一部分通过混合罐进入转轮脱附区对吸附在转轮上的VOCs进行脱附;一部分进入换热器换热,换热后的部分热量通过烟囱排出,另一部分被经过换热器的VOCs重新带入催化燃烧器。反复循环利用,可以的降低能量损耗,同时实现废气自我催化分解的效果。

必须说明的是,催化燃烧不是的,不是所有的VOCs都可以处理的,一定要避免催化剂的物质,比如含氯有机物、大分子高沸点等物质。
RCO催化燃烧处理效果很多时候并不完全取决于催化剂,如果没有好的RCO催化燃烧设备的设计和加工,的催化剂也是徒劳的。先来看一下RCO催化燃烧设备中的催化反应器(催化床)单元。气体管道的截面积大大小于催化剂床的面积,也就是说气体在管道里的速度大于催化剂床中的速度。在进入催化剂床前气体还有一个加热单元,有电加热、也有燃气燃烧加热。
在我国,VOCs已经作为一种污染物开始进行系统的防治,国内外对VOCs的治理技术也开展了大量的研究和实践,环保部也征集和筛选了一批VOCs污染防治的***技术,编写了(2016年******污染防治技术目录(VOCs防治领域)》,其治理技术主要分为回收与销毁。回收技术一般是通过物理方法例如改变温度或压力将有机物进行分离,包括吸收、吸附、冷凝、膜分离等技术,回收的VOCs可经过简单纯化后再度利用,或进行集中处理。