




破碎过程的实质
破碎过程,必须是外力对被破碎物料做功,克服它内部质点间的内聚力,才能发生破碎。当外力对其做功,使它破碎时,物料的潜能也因功的转化而增加。因此,功率消耗理论实质上就是阐明破碎过程的输入功与破碎前后物料的潜能变化之间的关系。
为了寻找这种能耗规律和减小能耗的途径。做弯矩图:根据前面的简图,分别按水平面和垂直面计算各力产生的弯矩图,并按计算结果分别作出水平面上的弯矩HM图和垂直面上的弯矩图上FM,然后按照后面的公式推导出总弯矩,并作出M图。许多学者从不同的角度提供了若干个不同形式的破碎功耗学说。目前公认的有:面积学说,体积学说,裂缝学说。我们只做简单的介绍:面积学说:1867年,Rittinger提出的,破碎消耗的有用功与新生成的物料的表面积成正比。
裂缝学说:1952年,外力使矿块发生变形,并贮存了部分变形能,一旦局部变形超过了临界点,则产生垂直与表面的断裂口。传动方式的选择与计算(V带传动计算)该部分的设计主要体现在V带轮的设计上,带轮的结构型式,主要由带轮的基准直径选择。断裂口形成后贮存在料块的内部的变形能就释放,裂口扩展成新的表面。输入功一部分转化为新的生成面的表面能,另一部分因分子摩擦转化为热能释放。所以,破碎功包括变形能和表面能。变形能和体积成正比,表面能和面积成正比。
飞轮的设计与计算
飞轮的作用是,转子在运动中储存一定的动能,避免破碎大块或较硬的物料时,速度损失不致过大和减小电机的尖峰负荷。其结构采用腹板式。
棘轮的选择
蓖条与锤头端部的间隙由两个装置来实现:凸轮和弹簧,凸轮是用来增加这两者的间隙的。操作是靠手柄来实现的。而弹簧用来进行“微调”,当手柄操作不能达到满意的位置时,需要用弹簧进行再调整。