渗碳氮化常见问题与解决技巧
1.渗碳后工件硬度不足
(1)冷却速度不足,可利用喷水冷却或盐水冷却
(2)渗碳不足,可使用强力渗碳剂
(3)淬火温度不足
(4)淬火时加热发生之脱碳现象所导致,可使用盐浴炉直接淬火
2.渗碳层剥离现象
(1)含碳量之浓度坡度太大,应施以扩散退火
(2)不存在中间层,应缓和渗碳的速率
(3)过渗碳现象,可考虑研磨前次之渗碳层
(4)反复渗碳亦可能产生渗碳层剥离的现象
不锈钢热处理
??1、一般过热:热处理加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。粗大的奥氏体晶粒会导致钢的强韧性降低,脆性转变温度升高,增加淬火时的变形开裂倾向。而导致过热的原因是炉温仪表失控或混料(常为不懂工艺发生的)。过热***可经退火、正火或多次高温回火后,在正常情况下重新奥氏化使晶粒细化。
??2、断口遗传:热处理有过热***的钢材,重新加热淬火后,虽能使奥氏体晶粒细化,但有时仍出现粗大颗粒状断口。产生断口遗传的理论争议较多,一般认为曾因加热温度过高而使MnS之类的杂物溶入奥氏体并富集于晶界面,而冷却时这些夹杂物又会沿晶界面析出,受冲击时易沿粗大奥氏体晶界断裂。
??3、粗大***的遗传:有粗大马氏体、贝氏体、魏氏体***的钢件重新奥氏化时,以慢速加热到常规的淬火温度,甚至再低一些,其奥氏体晶粒仍然是粗大的,这种现象称为***遗传性。要消除粗大***的遗传性,可采用中间退火或多次高温回火处理。
氮化处理有哪些优缺点?
(1)氮化处理优点
较高的疲劳强度:氮化后,零件表面形成的各种氮化物相的比容比铁大,因此氮化后表面产生了较大的残余压应力。表层残余压应力的存在,能部分地抵消在疲劳载荷下产生的拉应力,延缓疲劳***过程,使疲劳强度显著提高。同时氮化还使工件的缺口敏***降低。一般合金钢氮化后,疲劳极限可提高25%~35%;有缺口的试样,可提高2~3倍。
(2)氮化处理的缺点
氮化处理一般只适用于某些特定成分的钢种,如含有Cr、Mo、Al、W、V、Ti等合金元素的钢种,否则难以达到氮化处理对性能的要求。
