







真空镀膜机设备真空镀膜机系统特点
真空镀膜机在等离子体束溅射中,溅射离子均匀刻蚀靶面,并且不会使靶面产生氧化。与磁控溅射相比,其中的等离子体束是由射频等离子体源产生的,磁场的作用则是使等离子体束会聚并偏转至靶面,因此,虽然等离子体束溅射镀膜系统内也有磁场,但其磁场却并不控制影响溅射,这也摒弃了磁控溅射中由磁场不均匀带来的“磁控”的缺点。在溅射完成后,所得的靶材利用率可高达90%以上。
真空镀膜机即分别进行磁控溅射和等离子体束溅射之后靶面刻蚀的对比图。由于靶材的利用率大幅度提高,也解决了磁控溅射中所难以克服的缺点,即靶中的毒导致的刻蚀不均匀
真空镀膜机此外,磁控溅射由于背面磁铁磁场不均匀而产生溅射跑道,非磁场约束区很容易产生氧化,因此很难沉积铁磁性材料,而等离子体束溅射中由于不用磁铁作为等离子体约束,能够进行铁磁性材料的镀膜,并且可以使用很厚的靶材,图3中实验金属钴的厚度即为6mm。对于铁、镍、铬以及铁磁性化合物,等离子体束溅射也都具有很高的溅射速率。
应用该项镀膜技术的系统还有一个优点,当将电磁线圈的极性反接时,由于磁场的方向产生了变化,等离子体束会在磁场的作用下轰击基片,从而对基片产生清洗作用,如图4所示。这实际上可以使得应用该项技术的镀膜机省略常规镀膜机的清洗用离子源。
光学真空镀膜机薄膜根据其用途分类、特性与应用可分为哪些膜
光学真空镀膜机薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等。相关衍生的种类有光学级保护膜、窗膜等。
光学真空镀膜机光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,起表面和界面是粗糙的,从而导致光束的漫反射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各种向异性;膜层具有复杂的时间效应。
光学镀膜技术在过去几十年实现了飞快的发展,从舟蒸发、电子束热蒸发及其离子束辅助沉积技术发展到离子束溅射和磁控溅射技术。近年来在这些沉积技术和装备领域的主要技术有以下三点:
一、渐变折射率结构薄膜技术与装备:
渐变折射率结构薄膜技术与装备:已经有大量研究工作已经证实Rugate***面型薄膜结构和准Rugate多种折射率薄膜结构通过加强调制折射率在薄膜厚度方向上分布,能设计出非常复杂的光谱性能,(部分)消除
了薄膜界面特征,(部分)消除界面效应,如电磁波在界面上比薄膜内部更高密度的吸收中心和散射,也可以增加了薄膜力学稳定性。
二、磁控溅射光学镀膜系统
以LeyboldHelios和ShincronRAS为代表,磁控溅射技术及装备在精密光学领域和消费光电子薄膜领域占据越来越大的份额。磁控溅射薄膜沉积过程控制简单,粒子能量高,获得的薄膜结构致密稳定。
三、间歇式直接光控:
间歇式直接光控:以LeyboldOptics公司的OMS5000系统为代表,光学镀膜过程中越来越多地使用间歇式信号采集系统,对镀膜过程产品片实现直接监控。相对于间接光控和晶控系统,间歇式直接光控系统有利于降低实际产品上的薄膜厚度分布误差,可以进一步提高产品良率并减少了工艺调试时间。