




为了更好地了解米粉烘干机的性能,在装置建成后以菊花为原料。该装置进行了太阳能干燥实验、热泵干燥实验和太阳能热泵联合干燥实验。通过实验绘制了实验数据曲线,并对实验装置的能耗和干燥特性进行了研究,分别得到了实验结果。根据米粉烘干机的负荷计算,确定了辅助设备的类型,确定了太阳能集热器的面积分布。两个实验结果如下:第1,与菊花干燥相关的能耗;第二,通过比较分析,得出太阳能单独干燥和联合干燥的可行性的优缺点。
米粉烘干机的干燥试验步骤为:(1)在温室进风口、出风口、顶部和温室中部安装湿度和温度探头;(2)在地面以上1.5米处测量环境温度和湿度,使用数字式温湿度计将装置置于通风棚内;(3)固定。空气收集器旁的太阳能辐射计,米粉烘干机使空气收集器与辐射计底座平行;(4)将太阳辐射计固定在空气收集器旁边;将成品花放在干燥室的空气平衡板上,连接电源以运行干燥装置。实验数据记录如下:1。将花朵分拣出来后,称出初始重量,并在每次实验开始和结束时称出材料的重量,并记录米粉烘干机相关数据。2。因此,结合太阳能干燥的其它干燥方法可以解决上述问题,其中具有环境约束小的热泵供暖可以广泛使用,既卫生又环保。将菊花放入干燥室后,打开干燥室内的相关设备,每小时左右记录一次干燥室内的环境湿度、环境温度、湿度和温度。(3)利用计算机记录装置上太阳辐射的相关数据。
上午8:00到下午18:00,总干燥时间为11小时。在这种天气条件下,干燥时间和干燥时间基本相同。吸湿现象发生在夜间,表明干燥过程将结束。太阳能热泵联合干燥和热泵***干燥基本可以实现智能恒温干燥,可满足菊花9小时左右的干燥要求。
通过米粉烘干机试验,得出以下结论:(1)在相同的室内湿度和风速条件下,原料厚度和干燥介质温度是影响干燥速率的主要因素。在太阳能干燥的前两个小时中,干燥速度相对较快,因此在此期间排出的主要水是菊花表面或菊花空间上的自由水。当这些水分减少时,菊花的干燥难度增加。在干燥后期,游离水被排出,米粉烘干机里的物料中残留的水难以排出,干燥速率低。米粉烘干机由干燥室、集热器、风扇、计算机控制板和支架组成,热泵干燥系统由干燥室、压缩机、冷凝器、热膨胀阀、蒸发器、干燥过滤器、储液器等组成。(2)由于太阳辐射强度不均匀,干燥室内温度不稳定。上升时间从早上8点到下午2点,因此在整个干燥过程中我们无法清楚地看到菊花的不同干燥速率。(3)米粉烘干机能实现精准、智能的温度控制,干燥效果良好。
米粉烘干机是一种常用的机械设备,其使用率在国内外稳步提高。它涵盖了化学工业、矿业、水产养殖业、食品工业等多个领域。菊花具有丰富的综合营养价值,近年来在畜牧业中的应用越来越广泛。主控制器和显示面板位于干燥箱前部的右侧,便于操作人员控制或启动和停止设备,从而确保设备运行的安全性。然而,菊花由于鲜叶含水量高,在收获、运输、贮藏和销售过程中经常腐烂变质,严重影响了菊花的便利性和经济性。因此,有必要利用菊花干燥机对菊花进行干燥,以降低水分含量,同时保持甚至改善一些生物学特性。参考国内外米粉烘干机样机,对目前国内广泛使用的菊花干燥机进行了改造。
大部分米粉烘干机设计水平仍停留在上世纪九十年代,存在产品造型简单僵化、颜色单调、能耗大、操作不方便等缺点。结合实际研发项目,以菊花烘干机为研究对象,对产品进行功能、结构分析、需求挖掘,寻求设计方向和***;结合***工程、色彩、材料科学、美学等现代设计方法。对米粉烘干机的造型设计进行科学、美观、多层次、多角度的开发。研究分析;运用人机工程学来研究和提高产品设计的实用性和适应性;在研究成果的基础上,进行菊花烘干机的产品设计实践,采用多因素模糊综合评判法对菊花烘干机方案进行科学客观的评价和分析。跟着工业化进程的加速,开展自动化干燥设备、完成智能控制、远程监测控制、干燥过程中参数在线监测、米粉烘干机干燥数据实时分析、异常情况预警等功能是未来开展的主要方向。再评价法为产品设计提供了新的方向和思路,从价值上支持菊花干燥机的质量和价格。