




水蓄冷贮槽容积设计确定:
(由暖通设计手册查的 )水蓄冷贮槽容积按下式计算:
V=(QS×P)/(1.163×η×△t)
V—所需贮槽容积,m3;
QS—设计15分钟所需蓄冷量;
P—容积率,与贮槽结构、形式等因素有关,一般为1.08~1.30,对分层型及容量大的贮槽可取低限,其余形式及容量小的贮槽可取高限;
η—蓄冷槽效率,与贮槽结构、保温效果和冷温水混合程度有关,具体可参见表1;
△t—蓄冷槽可利用的进出水温差。
大温差水蓄冷的斜温层较小温差水蓄冷稳定,波动也小,温度分层较明显。这是由于随着蓄冷温差的增加,蓄冷罐的密度差异越发明显,因而蓄冷罐内形成的浮升力将加大,导致自然分层效应加强,有助于斜温层的厚度增加变缓和蓄冷效率的提升。
然而,热水层与冷水层温差加大,同时导致两者之间导热量增加,这也会导致斜温层加厚。相关研究显示,增加蓄冷温差可以增加蓄冷量,同时会增加斜温层的厚度,降低蓄冷系统的效率。相关文献的工程实例表明,5 ℃的蓄冷温差,蓄冷效率约为87%;15 ℃的蓄冷温差,蓄冷效率约为93%。然而上述项目中的蓄冷罐高径比、水的流速与雷诺数都远小于实际工程中的值。因此,蓄冷温差对蓄冷效率的影响需要综合考虑蓄冷罐的形状、高径比、充放冷的水流速度等因素。
综上所述,蓄冷罐内斜温层的位置会随着充、放冷的过程而变化,整个充、放冷过程是一个非稳态的流动与传热过程,直接计算和控制斜温层的厚度难度较大。因此在蓄冷系统的设计中,为了保证水蓄冷系统可靠、***运行,通常需要进行模拟,以对蓄冷罐的设计进行优化。
5、蓄冷罐设置有测温系统,蓄冷罐中心每隔500mm应配备一个温度传感器;蓄冷 罐应设置液位传感器,并设有高低液位报警,向能源站控制系统提供信号。
6、罐体按照蓄冷温度设置保温层,日总热损失率在.热月24小时内冷损失低于 总蓄冷量的4%(24小时温升不超过0.3℃)。聚氨酯现场发泡,传热系数低于 0.035W/m.K,阻燃B1级,聚氨酯发泡厚度不得低于60mm。

