声学工程装饰公司
音频应用涉及人类感知,频率范围为 20Hz 至 20kHz。在室温下的空气中,音频问题的波长范围从大约 17 m 到 17mm。如果我们用一种网格计算整个人类听觉频率范围,我们需要解析对应于 20 kHz 的波长。在高频端,这导致***大单元大小,或空间分辨率,为(17mm / 5 =)3.2mm。声学工程装饰公司对***高频率的网格进行解析会导致用于低频预测的网格过于密集。在 20 Hz 时,波长为 17 m,每波长有 5360 个节点,远远超过所需的 10 或 12 个节点。每个节点都对应于计算机的内存分配。虽然这种密集网格方法从精que度的角度来看是很好的,但是过于密集的网格占用了计算资源,并因此需要较长的时间进行计算。声学工程装饰公司





音乐声学(Musical Acoustics):致力于研究音乐的物理特性和感知。主要包括乐器和电子合成器的功能和设计,人类的嗓音研究,电脑分析音乐和合成(原来有个同事在芬兰学的computational music),***的音乐***等等。
噪声控制(Noise Control):顾名思义,关注怎样降低噪声,可从三个领域降噪:噪声源、传播途径和接受者(比如戴耳塞)。噪声控制里面包含一个重要的工业应用分支:NVH(noise, vibration, and harshness),在汽车领域扮演者极为重要的角色。继N和V之后,H也逐渐被重视起来,这就不得不谈心理声学。
声学工程装饰公司
对于某些问题,流体的温度或密度可能在计算域内发生显著变化。如果出现这种情况,声速会发生变化,并且必须包含在模型中。网格必须足够密集才能反映这一点。声学工程装饰公司
此讨论与射线zhui踪、压力声学,边界元和声学扩散接口无关。本文中的信息可应用于气动声学和热粘性声学接口或基于 dG-FEM 的超声波接口的自由场问题。声学工程装饰公司流动的对流效应改变了波长,应该在源的上游或下游使用复杂的网格来体现这一点。线性纳维-斯托克斯和线性欧拉接口具有默认的线性插值(单元),因此每个波长需要 10 或 12 个单元。热粘性声学接口设计用于解析声学边界层。该层的厚度也与频率有关,可以使用与这里所讨论的类似的方法用于该层的***网格划分和分辨率。声学工程装饰公司