在 T-coil 的宽度应用中,除了上面对设计优化的考虑外,一些 T-coil 自身问题也需要在
设计中关注并解决。
(1) 片上 T-coil 往往占据顶层金属大量面积,而在顶层电源布线以及非常紧张了,
所以大面积的 T-coil 对顶层设计非常不利;同时,大面积的 T-coil 不仅影响面积
使用率,而且会产生大量功耗。如果不解决大面积 T-coil 问题,想利用 T-coil 设
计多个高速 IO 口的想法将无法实现。
(2) T-coil 也存在可靠性问题。对于 ESD 结构中的 T-coil 也涉及到 ESD 电流路径, Tcoil 自身的串联电阻会引起较低的 ESD 抵抗力,高功耗会*** T-coil(尤其在 Tcoil 的一些突变拐角处,很容易受到 ESD ***)。另外,如果 IO 电路在常规模式
是大电流情况时, T-coil 可能会由于电迁移导致***。为了提升 T-coil 可靠性,
需要设计较宽的金属走线,这又使得 T-coil 面积增加了。
下面几个例子,讨论如何提升 T-coil 可靠性,同时又减小面积: 



随着工艺制程的不断发展,越来越***的工艺节点上,PDK中包含的P-cell越来越少,需要用户自己定制device,这对绝大多数的用户来讲,不仅局限于项目周期、资金投入,也局限于知识积累,是一件非常困难的工作。PeakView了解并理解客户的需要,所提供的EMD功能模块,可以满足客户定制器件的需求;
在PeakView中,用户根据自己的设计需要,调用PeakView内建的Pcircuit库,选择适合的器件类型,再确定器件版图参数,EMD模块即可生成用户所需的各种模型,包括:Symbol,Layout,Hspice model,spectre model,nport model以及RLCK model。满足设计者在不同设计阶段的使用。
T-coils 能提供恒定的输入阻抗,刚好能解决上面的麻烦,前面的接入电路不会再受到重
负载电容影响,仅看到一个恒定的终端电阻,可以进行可靠匹配,消除反射。
上面的问题见下图(a):对于输入网络, RT是负载电阻, CESD是 ESD 电容(恶化了输入
匹配,导致反射)。如果如下图(b)加入一个 T-coil, 那网络的输入阻抗能设计的始终等于
终端电阻 RT(Zin=RT), 而不受 CESD影响。可以通过下面两个极端条件看到这种亮点。
