汽车线束从功能上来分,有运载驱动执行元件(作动器)电力的电力线和传递传感器输入指令的信号线二种。电力线是运送大电流的粗电线,而信号线是不运载电力的细电线(光纤维通信);例如信号电路用的导线截面积为0.3、0.5mm2。
在电机、执行元件用的导线截面积为0.85、1.25mm2,而电源电路用导线截面积为2、3、5mm2;而特殊电路(起动机、交流发电机、发动机接地线等)则有8、10、15、20mm2不同规格。导线截面积越大,电流容量也越大。电线的选择,除了考虑电气性能外,还要受到车载时物理性能的制约,因此其选择范围很广。例如,出租汽车上的频繁开/关的车门和跨越车身之间的电线应该由挠曲性能良好的导线构成。在温度高的部位使用的导线,一般采用绝缘性和耐热性良好的、聚乙烯包覆的导线。近年来,微弱信号电路使用的电磁屏蔽线也不断增加。
随着汽车功能的增加,电子控制技术的普遍应用,电气件越来越多,电线也会越来越多,汽车上的电路数量与用电量显著增加,线束也就变得越粗越重。这是需要解决的大问题,如何使大量线束在有限的汽车空间中如何更有效合理布置,使汽车线束发挥更大的功能,已成为汽车制造业面临的问题。




针对某一款四冲程船用柴油机,利用商业模拟软件***L-Fire建立柴油机三维数值模型,研究进气加湿耦合涡流比对燃烧的影响以及改善NOx和碳烟折中关系的潜力,给出优化方案,得到满足TierⅢ排放***的技术路线并保证指示燃油消耗率增长在2%以下.结果表明,加湿率增大,缸内温度和压力的峰值均降低,且降幅都约为2%;滞燃期延长,燃烧后移,对燃烧热效率不利.缸内温度和进气氧浓度的下降有效降低了NOx排放,降低幅度约为56.7%.一定的涡流比可以促进油气混合,而太大的涡流比会降低油束贯穿距,使喷雾前端偏转角度增大,影响油气混合.涡流比的增大对NOx和碳烟的排放形成先增后降的影响,在涡流比为0.5时碳烟排放.此外,对各种进气加湿率和初始涡流比获得的结果进行优化,其中有9种算例同时降低了NOx和碳烟排放,并且在初始涡流比为0.50时,加湿率100%和80%的两种方案满足TierⅢ的排放标准.