






低氮燃烧技术性能特征及其燃烧器的分类一、低氮燃烧技术及性能特征
1、单段火、两段火、两段火渐进式/比例调节
2、能适应任何类型的燃烧室。
3、空气和燃气在燃烧头混合。
4、通过调节燃烧空气和燃烧头,可以获得的燃烧参数。
5、无须把燃烧器从锅炉上拆下,就可直接取下混合装置,从而可以方便的进行维修***。
6、采用伺服电动机来进行一、二段空气流量调节,并且当燃烧器停止运行时,风门关闭以减少炉内热量损失。
7、可以给阀组加一个阀的密封控制装置。
8、采用一个法兰和一个绝缘密封圈与锅炉连接固定;配有一个4孔和7孔联接器。
9、根据要求可提供大于标准长度的鼓风管。
二、低氮燃烧器分类
1、按燃料分为重油燃烧器,燃气燃烧器以及双燃料燃烧器(轻油/燃气或重油/燃气);
2.按运行和操作方式分为:燃烧器有一级、两级、渐进两级式和带比例调节器的渐进两级式等(后者实行比例调节运行);
3.工业燃烧器系列:均为大功率燃烧器,专为特殊工业应用而设计。低氮燃烧器的工作原理 低氮燃烧器及低氮氧化物燃烧器,是指燃料燃烧过程中氮排放量低的燃烧器,采用低氮燃烧器能够降低燃烧过程中氮氧化物的排放。
氮是由燃烧产生的,而燃烧方法和燃烧条件对氮的生成有较大影响,因此可以通过改进燃烧技术来降低氮,其主要途径如下:
选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料;
降低空气过剩系数,***过浓燃烧,来降低燃料周围氧的浓度;
在过剩空气少的情况下,降低温度峰值以减少“热反应NO”;
在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。
减少氮的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。低氮燃烧器的分级燃烧及浓淡燃烧技术 由于热力型NOx的排放量受燃烧温度、氧气浓度跟停顿时光的影响:当燃烧温度低于1500℃时,简直监测不到NOx的生成,当燃烧温度高于1500℃时,NOx的生成速度按指数倍敏捷增加;氧气浓度越高,燃烧温度越高,NOx的生成量越年夜;依据降低NOx的燃烧技术的分类燃烧器是工业燃油锅炉、燃气锅炉上面的的重要设备,它保证燃料稳定着火燃烧和燃料的完全燃烧等过程,因此,要***NOx的生成量就必须从燃烧器入手。燃烧时光愈长,NOx生成量越大。
低氮燃烧器采用分级燃烧及浓淡燃烧技巧:助燃风由低氮燃烧器助燃风入口进入,在燃烧器喷嘴处设置有差别的助燃风通道,针对低热值的兰炭尾气,该类低氮燃烧器设置有***助燃风(一级配风)、浓燃烧旋流风(第二级配风)及氮燃烧旋流风(第三级配风)地区,分别与对应的三级燃气地区停止混杂,实现浓淡及分级燃烧,到达平衡炉膛温度场、降低热力型氮氧化物的目的。1NO治理现状国内外已对NO的危害、燃煤发电燃烧过程中NO的生成机理和降低NO技术进行了较为充分的研究,可分为三种:热力型NO、燃料型NO和快速型NO。
根据系统燃用燃料及功率请求,每台锅炉配4台燃烧器。燃烧器分前墙双层支配,高低各2台。低氮燃烧器是基于轴向动力学特征跟燃料分段补给道理,运用涡旋与非流线形体联合感化的后果,使燃料及助燃气氛散布平均,同时实现燃料与气氛的超级混杂,从而使火焰温度平均,降低热力型NOx的发生。经过长达3年的理论分析、设计改进、我们的研发团队终于成功研发出了适合我国低氮燃烧的燃烧机,并成功应用于600MW亚临界控制循环锅炉工程。
除燃烧器本体及喷嘴外,该系统还包括有燃气管路部分、助燃风部分以及控制部分。
燃气管路由主管路及支管路造成,主管路部分包括手动关断阀、压力表等。燃气支管路部分由手动阀、压力表等造成;燃烧系统助燃风,需与现场现实情形贴合,并在主风道上设置有风门实行器,用于负荷变更时实现助燃风量的自动调节。低氮燃烧器中一体机与多体机低氮燃烧器及低氮氧化物燃烧器,是指燃料燃烧过程中氮排放量低的燃烧器,采用低氮燃烧器能够降低燃烧过程中氮氧化物的排放。在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮的氧化物通称为氮氧化物NOx。大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。在欧洲,瑞士瑞特力(Rutli)燃烧器烟气外循环技术比较成熟,其P系列机型带烟气外循环的燃气燃烧器氮氧化物排放可以达到60mg/m3。
一般燃料燃烧所生成的NO主要来自两个方面:一是燃烧所用空气(助燃空气)中氮的氧化;二是燃料中所含氮化物在燃烧过程中热分解再氧化。在大多数燃烧装置中,前者是NO的主要来源,我们将此类NO称为“热反应NO”, 后者称之为“燃料NO”,另外还有“瞬发NO”。燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。实际上除了这些反应外,NO 还可以与各种含氮化合物生成NO2。在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。降低氮的燃烧技术NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下:选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料;技术性能●单段火、两段火、两段火渐进式/比例调节●能适应任何类型的燃烧室。降低空气过剩系数,***过浓燃烧,来降低燃料周围氧的浓度;在过剩空气少的情况下,降低温度峰值以减少“热反应NO”;在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。减少NOx的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。
由于传统锅炉不能满足新标准的环保要求,大部分地区都采取了低氮燃烧技术改造的方式来响应我国当前在环保方面的政策,为满足环保指标要求,更是抓住这次机会,蓄力扬帆,逐梦起航。
环保锅炉改造的“热潮”使一批进口燃烧器品牌进入中国市场,而中国国产品牌燃烧机也层出不穷。烟气再循环低氮燃烧器曾经在北京财贸大学校区锅炉房内的法罗力热水锅炉改造中使用,降低了锅炉材料成本,在一定程度上避免酸腐蚀及电器部件短路损害风险;锅炉低氮燃烧和SNCR脱硝技术在现有LNB技术和SNCR技术原理的基础上,对锅炉LNB和SNCR技术进行大量的试验研究和工程化研发,研究适应于煤粉低氮燃烧和SNCR脱硝优化技术装备的耦合技术。而北京动车段一场也曾安装魅焰燃烧器,魅焰燃烧技术的运用使低氮排放的同时 CO 排放近乎为零,并且还延长了锅炉使用寿命。从表面燃烧技术到烟气再循环技术到魅焰燃烧技术等,每一次的改造都实现了 NOx排放低于30mg/m3的目标。
(北京)能源设备技术有限公司成立至今就一直奉行超越自己比超越对手更有意义的研发理念,在研发创新的过程中,不断超越自己。主要做的是NOx排放低于30mg/m3的燃烧器,适用于输出功率0.5~165吨(0.35~116MW)的工业锅炉及热载体炉,涵盖烟气再循环技术,魅焰燃烧技术及表面燃烧技术,同时还为相关行业企业提供技术咨询,运用自身丰富的低氮燃烧技术经验为我国的环保事业贡献自己的一份力量。”在日前举行的北京地区燃气锅炉低氮燃烧研讨会上,北京交通大学贾力表示,在北京供热锅炉大规模完成“煤改气”后,大量燃气锅炉所产生的氮氧化物污染物也应引起足够的重视。
氮燃烧器改造的锅炉是传统燃气锅炉更新换代的产品,是经典款式的无限升级,低碳燃烧器将再次扬帆起航,以自主知识产权、注册品牌与商标的优势,依托严谨的CFD设计方法,严格要求于生产、组装、电路设计及自动化集成的每一个环节,砥砺前行,超低氮燃烧技术,一往无前。因此,为了降低NO的排放量,必须人们优化调整燃烧方法,并且在满足环保排放要求的前提下要程度兼顾运行经济性。
为了满足加工行业的需求,高负荷燃烧器被开发出来,以满足在负荷摆动期间仍然在线的燃烧器,并且可以快速改变燃烧率以满足新的负荷要求。通常情况下,在低负荷时,燃烧器会自行关闭,容器中的蒸汽量将处理小的蒸汽需求量。当主蒸汽负载回来时,低氮燃烧器会启动并调节到一个较高的速率来处理新的负载。问题是需要花费大约2分钟的时间才能完成安全启动程序,然后达到高速蒸汽,到那时蒸汽压力可能下降到这个过程不能正常工作的程度。HTD燃烧器在这些低负载下不能循环,但仍然在运行,随着负载的增加,它会立即调整到更高的速率以匹配负载并保持蒸汽压力。优化关键参数,可使系统在运行成本较低的情况下,达到较高的脱硝效率。这确保蒸汽压力保持恒定并支持工艺要求。
对于过程工业而言,这是首要的考虑因素,因为保护过程的成本远远超过蒸汽产生的成本。对于其他应用程序,还有一些好处可以使这个刻录机非常有吸引力。***常见的项目是简单的成本回报,通过减少开关循环。每次燃烧器启动时,必须清除炉子(作为安全措施,清除可能从泄漏的气体阀门进入的任何燃料气体)约90秒,其中迫使大量空气通过容器清理可能在炉内的燃料气体。当这种冷空气通过容器时,它被锅炉加热到与蒸汽或热水的温度大致相同的温度,然后这个吹扫空气被排出堆放到环境中。加热这种吹扫空气的能量消失了,当低氮燃烧器重新启动时,它将需要弥补这个损失的能量加上负载所需的能量。这种开关循环可以每小时发生20次,并且可能成为应用程序的主要能量损失来源。使用该液体燃料不仅燃烧成本低,而且餐饮业原柴油、液化气灶只需简单改装炉具即可。使用高对比燃烧器可以大大减少或消除开关循环和相关的能量损失。燃烧器厂家应该很明白这一点!
除频繁开关循环造成的能量损失外,频繁的开关循环也会造成元件磨损,从而增加了维护成本,降低了设备的可靠性。每次由于开关量大而导致组件失效时,燃烧器将不允许运行,并且必须在设备启动之前进行修理。如果该过程依赖于锅炉低氮燃烧器组件,则可以关闭设施。有很多的企业因为生产的需要会产生很多的废油,这些废油不仅处理起来非常不方便,而且处理不好还会严重的污染环境。如果机组保持开启状态,则安全控制阀,燃烧风扇电机和其他部件不会快速循环。在所有这些项目中,来自开关循环的磨损将快速缩短部件寿命,而正常操作不会缩短部件寿命。
频繁的开关循环也可能导致炉子高温区域组件的更快。正常的火焰温度在2500°F左右,靠近火焰的成分也会处于相对较高的温度。这些部件(通常是钢,不锈钢和耐火材料)可以无限期地忍受这些高温,没有问题,但是频繁的加热和冷却会由于热冲击或应力而导致过早失效。当材料在短时间内经历非常大的温度变化时,会发生热冲击或应力。每当燃烧器循环开启和关闭时,都会发生这种情况,在一瞬间暴露在2500℉的火焰温度下,瞬间被吹扫循环中的冷空气击中。重油燃烧器,燃气燃烧器以及双燃料燃烧器(轻油/燃气或重油/燃气)。在启动时,在材料通过延长的预吹扫过程冷却的情况下发生相反的情况,然后立即用2500度的火焰击中。例如,不锈钢扩散器不能以均匀的方式加热,因此外表面首先变热,并在受热时膨胀。内部材料仍然是冷的,并没有扩大,所以这两个膨胀率的差异导致材料内部的高应力水平,导致疲劳开裂并***终导致材料失效。较小的单位可以处理更频繁的开关循环,只是因为他们的小尺寸提供有限的扩张和收缩。大型单位不应该频繁的开关机。除了热应力外,较大的电机不能容忍频繁的开关循环。