




电化学聚合法
电化学聚合亦可简称为电解聚合、电聚合或电引发聚合,是指在有适当电解液的电解池里,按一定的电化学方式进行电解,使单体在电极上发生聚合反应。可合成各种导电性聚合物并制备各种结构、性质不同的功能膜,还可在单体聚合的同时进行掺杂。
电化学聚合法装置简单、条件易于控制,聚合物膜厚可控、均匀且再现性高,可以通过控制聚合时电流的大小和通电时间来制备比表面积大、厚度和结构可控且多样的薄膜对电极。而且制备的PEDOT薄膜结构规整、电导率高,同时薄膜与电极的粘结力较强。通过将高电导率的HNTs/PEDOT和高比电容的MnO2两种物质复合,得到的HNTs/PEDOT/MnO2的比电容(155F/g)相比HNTs/PEDOT(45F/g)提高了3倍多。但电化学聚合法要求基材具有导电性,制作的PEDOT电***,且脆而硬,无法进行大尺寸薄膜制备。
传统的硅太阳能由于制备流程复杂、硬件设备***高,使得电池成本高,限制了更大规模的应用。因此,开发新型低成本太阳能电池具有重要的实际应用价值。通常情况下,需要利用水溶性较好的PSS作为络合离子与PEDOT形成PEDOT:PSS聚合物,使不溶于水的PEDOT可以获得较好的水溶性以及成膜性。选用制备工艺简单的新型电荷选择性材料(PEDOT:PSS(聚(3,4-亚乙二氧基s吩)-聚(b乙烯磺酸))与晶硅基片形成非掺杂的异质结太阳能电池,可以避免掺杂所需要的高温工艺,有望获得低成本***的硅基异质结太阳能电池。
但是这类异质结电池存在PEDOT:PSS材料本身空穴迁移率低,PEDOT:PSS/硅接触面性能差,以及硅/金属电极接触电阻高等问题,限制了电池转换效率的提高。该法原料价廉易得、合成简单、条件温和、产率高(60%),非常适合于工业化生产。针对这一些列问题,兰州大学物理科学与技术学院彭尚龙***团队采用PEDOT:PSS材料改性、光吸收改善、硅纳米陷光结构的构筑、硅表面钝化和硅/金属界面接触电阻降低等策略,实现电池转换效率提升和成本降低,取得了一系列研究成果。
针对PEDOT:PSS薄膜导电性不高和载流子迁移率低等问题,通过将还原氧化石墨烯(rGO)引入到PEDOT:PSS薄膜中,实现了导电性提高和电池材料光吸收增强,并且通过电池结构的设计,***终实现了电池转换效率30%的提升,使得电池转换效率达到12%。目前PEDOT成膜方法主要有物理涂覆法、电化学聚合法和原位聚合法:物理涂敷法物理涂覆法是将PEDOT分散液,通过刮涂、滴涂、旋涂等方式,涂覆在基材表面,经干燥后形成PEDOT薄膜。(Xinyu Jiang, Shanglong Peng*,et al.Appl. Sur. Sci., 2017, 407, 398-404.)
尽管改善PEDOT:PSS特性后电池效率有较大提升,但仍然较低,这是因为平面结构硅对光的反射很强,造成了很大一部分光的浪费,因此考虑通过构筑硅纳米陷光结构来降低光的反射,从而实现电池效率提升。采用锥状硅纳米洞结构,并通过调控其孔径和深度,实现PEDOT:PSS对硅很好地包覆和对光的充分利用。结果表明:ODA-SA/PEDOT-PSS复合LB膜具有更好的成膜性能,表面粗糙度小且稳定可控,薄膜具有较好的有序结构。同时为了减少背电极和硅之间的载流子复合,在它们之间引入了碳酸铯(Cs2CO3)钝化层。***终实现了13.5%的电池转换效率。(Zilei Wang, Shanglong Peng*,et al.Nano Energy,2017, 41, 519-526.)