




. 为什么激光焊接(熔覆)变形小:主要是熔铸区域小,过渡区域小,收缩量小。那么材料在收缩过程中所产生的收缩力,不足以使整个机体变形。这就是所谓激光熔覆不变性的原因(所以当机体尺寸过小时同样会产生变形)这也是激光焊接(熔覆)的优势。那么这种焊接应力到哪里去了呢?它主要是释放到熔铸区域和过渡区域了。那么这就产生了两个问题。一是熔铸区容易产生裂纹,所以激光熔覆对材料的延展性要求比较高,如镍基粉末;二是过渡区应力大,由于激光焊接过程中加热快冷却快,产生的过渡区尺寸过小,造成这一区域应力集中,这就影响了激光焊接(熔覆)的结合效果。特别是在基体与焊材机械性能相差较大时,倾向更严重,甚至产生脱落现象,这就要求在激光熔覆时格外注意过渡层的材质和厚度设计。
综合光镜、XRD、电子探针分析结果,可知等离子熔覆冶金层内存在的结晶形态包括平面晶、胞状晶、树枝晶以及破碎枝晶形成的少量等轴晶。在冶金层中的存在的***主要由中上部的大块合金碳化物和大量无规则分布的共晶***以及在底部与破碎枝晶混合生长的共晶***组成,其组成相主要由α-Fe或γ-Fe基底上的Fe-Cr-C系组成物(Fe,Cr)7C3、(Fe,Cr)23C6以及少量共晶化合物组成。对冶金层内不同***进行硬度测试,由于其分布形态和硬质相组成含量不同而表现出不同的硬度,硬质相含量较高的大块合金碳化物的硬度高于冶金层中上部的共晶***,而冶金层中上部的共晶***硬度高于冶金层底部分布较少的共晶***。
在平行于冶金层方向的同一平面上出现了两种不同的热影响区:在原奥氏体晶界上析出粗大先共析铁素体,其中夹杂着珠光体和铁素体的相变重结晶区;由索氏体和铁素体组成的晶粒细化区。通过各种实验方法对这两种不同热影响区的***形貌、形成过程、***性能分别进行研究分析,包含有珠光体***的大块体素体的热影响区在综合性能上低于索氏体和铁素体混合形成的热影响区,但从整体性能上来讲均能达到使用性能要求。
技术特点 激光熔覆***重要特点是热量集中,加热快冷却快热影响区小,特别对不同材质之间熔融有着其它热源无法比拟的特点,也正是这一特殊的加热和冷却过程,在熔铸区域产生的***结构也不同于其它熔覆(喷焊·堆焊·普通焊接等)手段,甚至可以产生非晶态***,特别是脉冲激光更为明显。这就是所谓激光熔覆不变形无退火的原因。但我以为这只是从工件整体宏观讲,而当你对熔覆层和热影响区进行微观分析时,你会看到另一种景象,