





磁控溅射法定义是什么?
磁控溅射法是在高真空充入适量的Ar,在阴极(柱状靶或平面靶)和阳极(镀膜室壁) 之间施加几百K 直流电压,在镀膜室内产生磁控型异常辉光放电,使Ar发生电离。Ar离子被阴极加速并轰击阴极靶表面,将靶材表面原子溅射出来沉积在基底表面上形成薄膜。
创世威纳——***生产、销售 磁控溅射镀膜机,我们公司坚持用户为上帝,想用户之所想,急用户之所急,以诚为本,讲求信誉,以产品求发展,以质量求生存,我们热诚地欢迎各位同仁合作共创辉煌。
溅射镀膜技术
溅射镀膜溅射镀膜就是在真空中利用荷能粒子轰击靶表面,使被轰击出的粒子沉积在基片上的技术。通常,利用低压惰性气体辉光放电来产生入射离子。磁控溅射镀膜机技术原理真空磁控溅射镀膜技术是通过真空磁控溅射镀膜机实现的,镀膜机内由不同级别的真空泵抽气,在系统内营造出一个镀膜所需的真空环境,真空度要达到镀膜所需的本底真空,一般在(1~5)×10-8Pa。阴极靶由镀膜材料制成,基片作为阳极,真空室中通入0.1-10Pa的Ar或其它惰性气体,在阴极(靶)1-3KV直流负高压或13.56MHz的射频电压作用下产生辉光放电。电离出的离子轰击靶表面,使得靶原子溅出并沉积在基片上,形成薄膜。溅射方法很多,主要有二级溅射、三级或四级溅射、磁控溅射、对靶溅射、射频溅射、偏压溅射、非对称交流射频溅射、离子束溅射以及反应溅射等。
由于被溅射原子是与具有数十电子伏特能量的正离子交换动能后飞溅出来的,因而溅射出来的原子能量高,有利于提高沉积时原子的扩散能力,提高沉积***的致密程度,使制出的薄膜与基片具有强的附着力。溅射时,气体被电离之后,气体离子在电场作用下飞向接阴极的靶材,电子则飞向接地的壁腔和基片。磁控阴极按照磁场位形分布不同,大致可分为平衡态和非平衡磁控阴极。这样在低电压和低气压下,产生的离子数目少,靶材溅射效率低;而在高电压和高气压下,尽管可以产生较多的离子,但飞向基片的电子携带的能量高,容易使基片发热甚至发生二次溅射,影响制膜质量。另外,靶材原子在飞向基片的过程中与气体分子的碰撞几率也大为增加,因而被散射到整个腔体,既会造成靶材浪费,又会在制备多层膜时造成各层的污染。
如需了解更多磁控溅射镀膜机的相关信息,欢迎关注创世威纳网站或拨打图片上的热点电话,我司会为您提供***、周到的服务。
磁控溅射镀膜机
以下内容由创世威纳为您提供服务,希望对同行业的朋友有所帮助。
ITO 薄膜的磁控溅射靶主要分为InSn 合金靶、In2O3-SnO2 陶瓷靶两类。在用合金靶制备ITO 薄膜时,由于溅射过程中作为反应气体的氧会和靶发生很强的电化学反应,靶面覆盖一层化合物,使溅射蚀损区域缩得很小(俗称“靶zhong毒”) ,以至很难用直流溅射的方法稳定地制备出的ITO 膜。在装饰设计装饰品上的运用:手机套、表带、眼镜框、五金配件、装饰品等镀一层薄薄的膜。也就是说,采用合金靶磁控溅射时,工艺参数的窗口很窄且极不稳定。陶瓷靶因能***溅射过程中氧的选择性溅射,能稳定地将金属铟和锡与氧的反应物按所需的化学配比稳定地成膜,故无zhong毒现象,工艺窗口宽,稳定性好。但这不等于说陶瓷靶解决了所有的问题,其薄膜光电性能仍然受制于基底温度、溅射电压、氧含量等主要工艺参数的影响,不同工艺制备出的ITO 薄膜的光电性能相差甚远。因此,开展ITO陶瓷靶磁控溅射工艺参数的优化研究很有意义。
镀膜设备原理及工艺
前处理(清洗工序)
要获得结合牢固、致密、无针1孔缺陷的膜层, 必须使膜层沉积在清洁、具有一定温度甚至是的基片上。为此前处理的过程包括机械清洗(打磨、毛刷水洗、去离子水冲洗、冷热风刀吹净)、烘烤、辉光等离子体轰击等。直流磁控溅射技术为了解决阴极溅射的缺陷,人们在20世纪开发出了直流磁控溅射技术,它有效地克服了阴极溅射速率低和电子使基片温度升高的弱点,因而获得了迅速发展和广泛应用。机械清洗的目的是去除基片表面的灰尘和可能残留的油渍等***, 并且不含活性离子, 必要时还可采用超声清洗。烘烤的目的是彻底清除基片表面残余的水份, 并使基片加热到一定的温度, 很多材质在较高的基片温度下可以增强结合力和膜层的致密性。基片的烘烤可以在真空室外进行, 也可以在真空室内继续进行, 以获得更好的效果。但在真空室内作为提供热源的电源应有较低的电压, 否则易于引起放电。辉光等离子体轰击清洗可以进一步除去基片表面残留的不利于膜层沉积的成份, 同时可以提高基片表面原子的活性。
想了解更多关于 磁控溅射镀膜机的相关资讯,请持续关注本公司。