




釜式反应器顶盖补强设计
前面的分析设计说明, 由于开孔的原因, 应力集中非常严重, 导致强度不足, 必须设法补强, 满足强度要求。从经济方面考虑, 尽管贴补强圈给制造带来了一定的难度, 但总体来说贴补强圈比整体补强要经济。另外, 由于反应釜外部所接管线比较多, 特别是顶盖上面, 所以选择了在内部贴680 mm×8mm的补强圈。无损检测要求为了确保强度, 保证焊缝质量, 无损检测要特别注意以下内容:(1)对局部薄膜应力高的部位应加强内部质量的检测, 一般情况下该部位应做超声波检测, 但基于材料为不锈钢, 则用表面探伤代替; (2)对人孔接管与封头、筒体连接的角焊缝, 应做表面无损检测, 要求制造厂家必须保证全焊透。不考虑设备的传热设计,或宽打窄用地提出热负荷是不可取的,这样往往造成锅炉或热油炉容量偏大。 (3)对弯曲应力较高的表面, 要求做表面检测,因材料为不锈钢, 作渗透检测。
化工反应釜事故树进行与之相对应的成功树构建后,即可进行径集结构函数计算求出,得到相应的径集, 然后,通过对反应釜结构重要度的计算分析,在其结构重要度分析中根据其构建的事故树结构情况,可以通过径集进行判断分析,后即可进行事故树安全分析,得出相应的事故结果,所构建的化工反应釜压力异常升高事故的主要原因包含搅拌效果差、温度反馈不及时以及反应前未将容器内清理干净等,根据其事故发生原因,可以通过对反应釜结构的优化改进,减少其事故问题及原因影响。反应釜温度控制技术分析化工生产中使用的反应釜为主要反应容器,利用导热介质,借助夹套实现物料加热。结合上述的事故树安全分析步骤,根据上述对化工反应釜压力异常升高引起的事故原因分析,在进行带搅拌化工反应釜结构优化与改进设计中,
由于传统结构的反应釜为进行清洗装置配备,多采用人工清洗方式,并且其结构中设置有一个搅拌装置,进行搅拌的形式较为单一,多以涡轮式、旋浆式以及框式、螺带式、锚式等为主;采用双相不锈钢2205计算出的厚度比采用普通的不锈钢的要小,这是因为双相不锈钢力学性能优异,强度高,在固溶状态下的室温屈服强度比未添加氮的标准奥氏体不锈钢高两倍多,这样在某些应用中就可以减小壁厚。此外,在作业过程中的温度控制方面,针对化工反应釜的温度控制与信息反馈系统研究应用较多,但是在与反应点更加接近的温度信息的读取上存在较大的局限性,针对这种情况下,结合上述对化工反应釜工作现场压力异常升高致事故原因的分析,本文专门提出一种能够更加方便的进行温度调节控制的自洗型化工搅拌反应釜结构。
造成反应釜腐蚀的根源可归结为一点, 即物料中含有一定量的Cl- , 特别是含有HCl。含有Cl-的物料一方面会使金属发生晶间腐蚀, 这是由于设备在制造过程中焊接及热变形, 温度可升到910 ℃以上, 而奥氏体不锈钢在400 ~ 850 ℃范围缓慢冷却时, 在晶界上有高铬的碳化物Cr23C6 析出, 因此就出现了贫铬区, 含铬低于11%的不锈钢在腐蚀的溶液(含Cl-溶液)中是不抗腐蚀的。从表面深入到内部, 使金属失去了强度。反应釜结构型式的确定木材工业用合成树脂的制造过程对反应状态的要求并不很严格,反应物粘度也不高,因此对反应釜结构、搅拌器型式以及传热面布置的适应性较强。另一方面, 含有Cl -的物料有时还会导致奥氏体不锈钢的应力腐蚀(是金属在拉应力和腐蚀及一定的温度的共同作用下所引起的)。
釜式反应器焊接方法
大量研究结果表明, 除氧炔焰焊接法因伴生碳污染焊缝外, 几乎所有的焊接工艺现在均可用于双相不锈钢。目前, 双相不锈钢的焊接方法主要有:①气体保护钨极电弧焊(GTAW), 有时也叫做惰性气体保护钨极(TIG)焊;②气体保护金属极弧焊(GMAW/MIG), 有时称为惰性气体保护金属极弧焊。③ 药芯焊丝电弧焊(FCW);④焊条手工焊(***AW/ 手工焊条电弧焊)等。以上焊接方法都有各自的适用范围, 可根据具体情况选用。筒体一处有一直径为300mm的鼓疱,可见此釜已严重腐蚀,尤其上封头腐蚀严重,已直接影响投料生产。本反应釜采用的是手工钨极气体保护焊接, 这种焊接方法的质量与母材、焊丝质量及焊接工艺关系极大。一般而言, 希望有焊接工艺过程的母材的相比例中, 奥氏体相略为占优, 以便高温热影响区能够获得较理想的两相比例。