




较厚焊件通常使用高熔敷率的焊接工艺进行焊接,比如GMAW焊和SAW 焊,同时焊件要设计坡口。虽然这些焊接工艺熔敷率高,但由于需要大量的焊滴填充焊缝的单面或双面V型坡口, 这些工艺的生产率并不高。窄坡口的焊接接头形式虽然降低了焊缝的总体体积,但是,也容易出现侧壁未熔合的焊接缺陷。这些因素都阻碍了很多高熔敷率的弧焊工艺的应用。虽然自动化气保护钨极弧焊(GTAW)成功地应用于窄坡口焊缝的焊接中,但它的熔敷率相对较低,也限制了它的整个生产率的提高。例如,将串联GMAW与窄坡口焊缝结合起来,与传统制造技术相比,焊接生产率能提高5倍以上。 EWI通过改进窄坡口串联气保护电弧焊(NG-T-GMAW), 将它成功应用于窄坡口焊缝的焊接中, 大大提高了焊接生产率。
热焊采用药芯半自动下向焊,半自动焊熔池温度高、熔深大,在根焊道较薄的位置焊接极有可能将根焊金属全部熔化而出现烧穿现象。为避免烧穿及内凹现象的发生,焊接时发现熔池温度过高可采用断弧焊进行焊接过渡。断弧焊的基本原理就在于当焊接中熔池温度过高时利用断弧方式使熔池短暂的冷却,然后再继续焊接,从而将熔池温度控制在较为合适的范围内。断弧焊按照正常运条角度起弧,形成熔池后按常规运条方法运条,然后立即断弧(一步一断法)或向前形成几个焊波后断弧(几步一断法),断弧后熔池稍一冷却迅速起弧,形成下一个熔池,再断弧、起弧,如此反复进行。自动焊技术其缺点体现在:一是对管道坡口、对口质量要求高,即要求管子全周对口均匀。