




阀杆为通杆结构,经过调质处理,有良好的综合力学性能和抗腐蚀性,抗擦伤性。蝶阀启闭时阀杆只作旋转运动而不作升降运行,阀杆的填料不易***,密封可靠。与蝶板锥销固定,外伸端为防冲出型设计,以免在阀杆与蝶板连接处意外断裂时阀杆崩出。 连接方式有法兰连接、对夹连接、对焊连接及凸耳对夹连接。驱动形式有手动、蜗轮传动、电动、 气动、液动、电液联动等执行机构,可实现远距离控制和自动化操作。
阀门电动装置有其特殊要求,即必须能够限定转矩或轴向力。通常阀门电动装置采用限制转矩的连轴器。当电动装置规格确定之后,其控制转矩也就确定了。一般在预先确定的时间内运行,电机不会超负荷。但如出现下列情况便可能导致超负荷:一是电源电压低,得不到所需的转矩,使电机停止转动;二是错误地调定转矩限制机构,使其大于停止的转矩,造成连续产生过大转矩,使电机停止转动;三是断续使用,产生的热量积蓄,超过了电机的允许温升值;四是因某种原因转矩限制机构电路发生故障,使转矩过大;五是使用环境温度过高,相对使电机热容量下降。.
控制阀的阀杆密封难度通常是,主要原因是操作频繁,而且阀杆密封应力不能太高。如果一台控制阀经历了100,000次阀杆循环操作,那么系统中其它类型的阀门往往只经历了1500次。高频度循环操作会导致密封元件磨损,随着时间推移会降低密封性能。为了优化流体控制性能,控制阀阀杆不能承受太大摩擦力,因此作用于控制阀的密封应力,明显低于手动阀门的密封应力。如果密封元件导致阀杆受到过大摩擦力,阀门的动作会滞后或出现速度偏差,并导致阀杆动作过大,流体控制性能降低。

阀瓣密封圈用橡胶直接以锯齿状嵌入阀瓣,无须使用压圈或螺栓固定,从而避免了采用传统螺栓压板型密封而导致的密封圈受力不均,使螺栓脱落以及密封圈过早损坏的问题。密封圈在反方向工作压力的作用下,产生自密封力,使密封比压增加,密封圈压紧阀座,反方向工作压力愈大,则自密封力也愈大,从而使密封圈与阀座结合紧密,达到双向密封的效果。
蝶板采用双偏心,启闭迅速,操作轻便省力。蝶板与密封圈间无滑动摩擦,密封面耐磨损,使用寿命长,密封可靠,易调整。