




归纳目前管道焊接的施工工艺主要有下述几种:
1. 用纤维素下向焊条手工焊,当有硫化1氢腐蚀较严重的管线或在寒冷环境中运行的管线,采用低氢型立下向焊条焊接。 由于手工焊的灵活性以及焊接设备的要求不高等原因,目前室外管线的焊接,手工电弧焊的工作量仍占40—50%,例如近年来我国陕西至北京的管线工程就从伯乐公司购买了各种纤维素焊条1千多吨,预测今后几年我国油气管线的年需焊条量位3—5 kt,并还有增加的趋势。
2. 立下向纤维素焊条打底焊,CO2气保焊填充面
由于CO2焊生产率高、成本低,该方法近年来不断得到推广和应用,但对油气管道焊,要实现全位置焊接必须在较小的电流范围内,用短路过渡形式完成,而短路过渡方式用于打底焊易出现未焊透等缺陷,因此采用立下向纤维素焊条打底实现单面焊,背面成型,然后再用的CO2气保焊填充面,这种工艺应用较普遍。
3. 自保护药芯焊丝半自动焊
自保护药芯焊丝半自动焊特别适用于户外有风的场合,它不使用CO2靠药芯产生的气体保护,抗风性好,可用于管道的高熔敷率的全位置焊,目前以林肯公司生产的自保护药芯焊丝为各国所认同,其品牌有:NR-207、NR-204-H、NR-208-H等多种,可适用于X70、X80等管道的立下向焊。但该方法也存在打底焊时焊根易出现未熔合的缺陷。
4. 焊机的CO2气体保护半自动或全自动焊
由于对CO2气保焊短路过渡过程控制技术深入研究的结果,目前国外相继生产了对焊接电流和电压波形进行适时控制或对输出特性进行电能控制的电源,前述的美国林肯公司的STT表面张力过渡焊接技术就属于波形控制的范畴。基于焊接设备性能的提高,使得管道实现半自动及全自动CO2气保焊得以很好实现,这就大大提高了焊接效率和焊接质量。
此外,在工厂内进行管道焊接也采用自动TIG焊,该方法质量好,但生产效率低。
较厚焊件通常使用高熔敷率的焊接工艺进行焊接,比如GMAW焊和SAW 焊,同时焊件要设计坡口。虽然这些焊接工艺熔敷率高,但由于需要大量的焊滴填充焊缝的单面或双面V型坡口, 这些工艺的生产率并不高。窄坡口的焊接接头形式虽然降低了焊缝的总体体积,但是,也容易出现侧壁未熔合的焊接缺陷。这些因素都阻碍了很多高熔敷率的弧焊工艺的应用。虽然自动化气保护钨极弧焊(GTAW)成功地应用于窄坡口焊缝的焊接中,但它的熔敷率相对较低,也限制了它的整个生产率的提高。 EWI通过改进窄坡口串联气保护电弧焊(NG-T-GMAW), 将它成功应用于窄坡口焊缝的焊接中, 大大提高了焊接生产率。
焊接重要部件的焊条,使用时应装入温度保持在100~150℃的专用保温箱筒内,随用随取。
存放一年以上的焊条用于重要部件焊接时,如对其质量发生怀疑,应重新做出鉴定,符合要求后方准使用。
11.焊接组装时应将待焊工件垫置牢固,以防止在焊接和热处理过程中产生变形和附加应力。
12.除设计规定的冷拉口外,其余焊口应禁止用强力对口,更不允许利用热膨胀法对口,以防引起附加应力。
13.焊接场所应采取防风、防雨、防雪、防寒等措施。
14.焊接施工过程包括对口装配、施焊、热处理和检验等四个重要工序。本道工序符合要求后方准进行下道工序,否则禁止下道工序施工。

