





下面我们来分析一下具体工作原理:
假设设输入电压为UI,当某种原因导致UI升高时,UD1相应升高,有稳压管的特性可知UD1上升很小都会造成ID1急剧增大,这样流过R1上的IR1电流也增大,R1两端的电压UR1会上升,R1就分担了极大一部分UI升高的值,UD1就可以保持稳定,达到负载上电压UR2 保持稳定的目的。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。这个过程可用下面的变化关系图表示:
UI↑→UD1↑→ID1↑→IR1↑→UR1↑→UD1↓
相反的,如果UI下降时,可用下面的变化关系图表示:
UI↓→UD1↓→ID1↓→IR1↓→UR1↓→UD1↑
通过前面的分析可以看出,硅稳压管稳压电路中,D1负责控制电路的总电流,R1负责控制电路的输出电压,整个稳压过程由D1和R1共同作用完成。
机械振动的噪音还是指输出电压中的高频交流分量?
不知道你说的噪音是指的机械振动的噪音还是指输出电压中的高频交流分量?
这两种噪音在直流稳压电源中都经常遇到机械噪音多是因为电路中,存在异常的电震荡,频率低于20K时,在变压器,电感器等的磁芯上,发出的声音,人耳能听到。解决的方法是调整补偿,减小放大器的输入阻抗,在干扰敏感的地方,加吸收电路等。
输出的纹波噪声主要是由于开关管截至的瞬间,由于变压器的漏电感和线路电感引起的尖峰电压,它是造成输出纹波噪声的原因,但是一般我们做的直流稳压电源的频率都很高,远大于20K,所以,如果没有异常的电路震荡,我们不可能听到声音
直流稳压电源产生的尖峰干扰和谐波干扰能量
由以上分析可以知道直流稳压电源中的噪声干扰源很多,干扰途径是多种多样的,影响较大的噪声干扰源可以归纳为以下三种:
(1)二极管的反向***时间引起的干扰。
(2)开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流,在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
(3)交流输入回路产生的干扰
直流稳压电源输入端整流管在反向***期间也会引起高频衰减振荡产生干扰。一般整流电路后面总要接比较大的滤波电容,因而整流管的导通角较小,会引起很大的充电电流,使交流输入侧的交流电流发生畸变,影响了电网的供电质量。(2)选定输入电压为保证稳压电源的效率,输入电压一般不要选择过高,以不超过2UI为宜。另外,滤波电容的等效串联电感对产生干扰也有较大的影响。
所有这些干扰按传播途径可以分为传导干扰和辐扰两类。直流稳压电源产生的尖峰干扰和谐波干扰能量通过直流稳压电源输入输出线传播出去形成的干扰称为传导干扰。但是并联稳压电源的这些固有的缺点却很难改进,所以现在普遍使用的都是串联稳压电源。谐波和寄生振荡的能量,通过输入输出线传播时,在空间产生电场和磁场,这些通过电磁辐射产生的干扰称为辐扰。