




换热终温的确定
换热终温一般由工艺过程的需要确定。当换热终温可以选择时,其数值对换热器是否经济合理有很大的影响。在热流体出口温度与冷流体出口温度相等的情况下,热量利用效率,但是有效传热温差,换热面积。
另外,在确定物流出口温度时,不希望出现温度交叉现象,即热流体出口温度低于冷流体出口温度。
设备结构的选择
对于一定的工艺条件,首先应确定设备的形式,例如选择固定管板形式还是浮头形式等。参照下表1-7.
在换热器设计过程中,强化传热总的目标概括有:在给定换热量下减少换热器的尺寸;提高现有换热器的性能;减小流动工质的温差;或者降低泵的功率。
传热过程是指两种流体通过硬设备的壁面进行热交换的过程,按照流体的传热方式基本上可以分为无相变和有相变两种类型。无相变过程强化传热技术的研究,一般依据控制热阻侧而采取相应的措施:
如采用扩展管内或者管外表面;采用管内插***;改变管束支撑件形式;加入不互溶的低沸点添加剂等方法,以增强传热效果。
管壳式换热器类型:
管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。该结构形式又可分成:①浮头式换热器:这种换热器的一端管板能自由伸缩,即所谓“浮头”。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
固定管板换热器
结构:管束连接在管板上,管板与壳体相焊。
优点:结构简单紧促,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。排管数比U形管换热器多。
缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性元件(如膨胀节)。不能抽芯无法进行机械清洗。不能更换管束,维修成本较高。
适用范围:壳程侧介质清洁不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。
山东昊铄智控科技有限公司
管壳式换热器类型
填料函式换热器结构:特点与浮头式相似。浮头部分在壳体外,在浮头与壳体的滑动接触面处采用填料函密封结构。
优点:由于采用填料函密封结构,使得管束在壳体内可以自由伸缩,避免了热应力。加工制造方便,节省材料,造价低,由于可抽芯,维修方便。
缺点:填料处易产生***。
适用范围:一般适用于2.5MPa以下的工作条件且不能用于易挥发,,***及贵重介质的工况。使用温度受限于填料的物性。目前使用较少。