




微纳米气泡的产生方式
喷射器型
像吸气机一样,喷射式喷嘴从喷嘴高速喷射液体,利用其出口附近产生的负压抽吸气体,并通过湍流混合和剪切机制产生微纳米气泡。 产生的气泡的平均直径为42.4μm。
文丘里类型
当使气体和液体同时在文丘里管的狭窄部分中流动时,大的气泡被液速快速变化产生的冲击波压碎,并产生了微纳米气泡。 当以约50ppm的量添加3-戊醇以防止气泡聚结时,产生气泡直径为100μm的微纳米气泡 )。

加圧溶解式
在加压溶解型微纳米气泡发生器中,将空气在水中加压至约3至4atm以使其溶解,并且当通过喷嘴在水中进行闪蒸操作时,减压且过饱和的空气被排放至排水装置中。 它变成微纳米气泡并被释放。 产生的微纳米浓度浓稠,液体变成乳白色。 气泡大小分布

微纳米气泡总结
作为开发使用微纳米气泡烹饪和加工食品的方法的基础,我们评估了微纳米气泡的发泡性能以及所得泡沫对于以豆浆为样品的微纳米气泡制成的泡沫的稳定性。 通过Thormi调节的食物添加到豆浆中,制备了四种具有不同粘度的样品,并使用微纳米气泡发生器产生气泡3至50分钟。 作为微纳米气泡发泡性的指标获得起泡力和泡沫表面高度,并且获得排水速率和排水速率作为所获得的泡沫的稳定性的指标,并且获得以下结果。
1。如果延长微纳米气泡发生时间,则起泡力增加。
2。为了提高因气泡产生而得到的泡沫表面高度,延长微纳米气泡产生时间是有效的,但粘性率高的样品的情况下,微纳米气泡产生时间的延长效果较小。
3。 尽管泡沫的排出速率随着时间的流逝而增加,但是当微纳米气泡产生时间长时,排出速率低,并且保持了泡沫的稳定性。 排水开始时的排水速率与发泡力呈负相关。
4。 随着微纳米气泡生成时间的增加,泡沫的排水速率降低,并且泡沫的稳定性增加。
从以上结果表明,延长微纳米气泡的产生时间对于增强发泡能力和获得泡沫的稳定性是有效的。

微纳米气泡生物活性
自从微纳米气泡泡实际可用以来只有几年时间,并且自宣布存在纳米气泡以来已经过去了大约一年。 尽管它是一项非常新的技术,但它的未来潜力巨大。微纳米气泡有望成为改善水环境的一项核心技术。 通过供应可以大大改善缺氧有可能做得很好。此外,即使在水产养殖中,微纳米气泡的生物活性作用不仅有利于生长。另外,由于微纳米气泡附着在饲料上并防止其沉降,因此极有可能被鱼捕集并且可以防止污泥的积累。

