金属材料的化学分析
金属化学成分分析(ehemiealeomitionanalysisofmetal)查明金属材料化学成分的试验方法。
鉴定金属由哪些元素所组成的试验方法称定性分析。像质计(像质指示器,透度计)是测定射线照片的射线照相灵敏度的器件,根据在底片上显示的像质计的影像,可以判断底片影像的质量,并可评定透照技术、胶片暗室处理情况、缺陷检验能力等。测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是后的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的独特化学性质,利用化学反应,对金属材料进行定性或定量分析。定量化学分析按后的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,后用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量
由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。射线探伤是利用某种射线来检查焊缝内部缺陷的一种方法,常用的射线有X射线和γ射线两种。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。光学分析法是根据物质与电磁波(包括从γ射线至无线电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。
光谱分析法
光谱分析法
光谱分析法是根据物质的光谱来鉴别物质及确定其化学组成 和相对含量的方法,是以分子和原子的光谱 学为基础建立起的分析方法。包含三个主要 过程:①能源提供能量;②能量与被测物质 相互作用;③产生被检测讯号。光谱法分类 很多,用物质粒子对光的吸收现象而建立起的 分析方法称为吸收光谱法,如紫外-可见吸收 光谱法、红外吸收光谱法和原子吸收光谱法 等。利用发射现象建立起的分析方法称为发射 光谱法,如原子发射光谱法和荧光发射光谱法 等。它可以用来检验非多孔的黑色和有色金属材料以及非金属材料,能显示的各种缺陷为:(1)表面的裂纹、缩孔、缩松、冷隔和气孔。由于不同物质的原子、离子和分子的能级 分布是特征的,则吸收光子和发射光子的能量也是特征的。以光的波长或波数为横坐标,以 物质对不同波长光的吸收或发射的强度为纵坐 标所描绘的图像,称为吸收光谱或发射光谱。
可利用物质在不同光谱分析法的特征光谱对其 进行定性分析,根据光谱强度进行定量分析。
什么是TOFD
超声波衍射时差法,是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和***。
TOFD技术与传统脉冲回波技术的的两个区别在于:
A) 更加的尺寸测量精度(一般为±1mm,当监测状态为±0.3mm),且检测时与缺陷的角度几乎无关。尺寸测量是基于衍射信号的传播时间而不依赖于波幅。
B) TOFD技术不使用简单的波幅阈值作为报告缺陷与否的标准。由于衍射信号的波幅并不依赖于缺陷尺寸,在任何缺陷可能被判不合格之前所有数据必须经过分析,因此培训和经验对于TOFD技术的应用是极为基本的要求。
TOFD技术的物理原理
衍射现象是TOFD技术采用的基本物理原理。
衍射现象的解释:波遇到障碍物或小孔后通过散射继续传播的现象,根据惠更斯原理,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。
TOFD工作原理
TOFD技术采用一发一收两个宽带窄脉冲探头进行检测,探头相对于焊缝中心线对称布置。发射探头产生非聚焦纵波波束以一定角度入射到被检工件中,其中部分波束沿近表面传播被接收探头接收,部分波束经底面反射后被探头接收。磁粉探伤法是检测钢铁等构件表面或者近表面缺陷的一种常用无损检测方法。接收探头通过接收缺陷的衍射信号及其时差来确定缺陷的位置和自身高度。

