数控机床电主轴激光淬火技术应用
(1)主轴及随机附带4个试样,试样直径80mm,壁厚20mm,两端磨平。在采用CO2激光器进行激光硬化前,分别在主轴和试样表面上涂覆一层特别涂料,以增加对激光的吸收。
(2)用5kW的CO2横流式激光器对主轴及试样进行激光淬火,其输出功率P=1800~2000W,扫描速度v=5mm/s,机床转速n=30r/min,扫描宽度2~3.5mm。激光切割特点⑴切割质量好①激光切割切口细窄,切缝两边平行并且与表面垂直,切割零件的尺寸精度可达±0。并采用微机控制淬火机床(工作台),配备灵活通用的工装夹具,固定淬火工件作平行移动、转动或合成运动。
(3)激光淬火化后的主轴及试样检验 淬硬层深度0.5~1.2mm;表面淬火硬度60~66HRC;***为外层极细马氏体 少量残留奥氏体,过渡层马氏体 铁素体 渗碳体,内层为原始***,即回火索氏体。
激光熔覆技术目前已应用于各大领域。需求量很大,包括航天航空、轨道交通、冶金石化、工程机械等。在各类钻具、截齿、轧辊、球阀、阀座和阀杆等各种易损件上,许多传统表面处理技术处理后,硬质材料易剥落,使用寿命不长。激光淬火的应用实例:激光淬火强化的铸铁发动机汽缸移动图册,使用寿命提高2~3倍。现利用激光熔覆增材制造技术,可完全避免此类问题。激光熔覆技术目前已应用各类材质。用激光熔覆强化铝合金表面,提高硬度和耐磨性,打开了铝合金作为摩擦副运动零部件的应用。激光熔覆技术替代镀硬铬工艺,解决了后者涂层与基体的结合强度弱、易脱落、环保等问题。
常用硬质合金涂层材料:铁基硬质合金,钴基耐磨合金,镍基高温合金,镍基高温合金加WC陶瓷颗粒材料作为加强项,钴基合金加WC陶瓷颗粒材料作为加强项。
自适应随形激光熔覆是解决上述难题一个行之有效的方法,主要包括以下三个基本步骤:
1. 采用传感器进行在线检测:传感器可以是接触式、机器视觉、激光位移等多种,而且必须要建立起传感器测量坐标系与机器人激光熔覆工具坐标系间的对应关系;
2. 自动数据处理:包括数据滤波、重构、建模等,一些应用还需要实现自动模型匹配、缺陷辨识等智能算法;
3. 自动路径生成和工艺参数配置:在自动数据处理所建立模型基础上,进行分层切片、生成填充轨迹,并根据缺陷类型,自动选择优化工艺参数。
