




粉末冶金***成型
等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。
等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PBD以及等离子体和离子束刻蚀等。目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。(1)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。而等离子体的另一个很有潜力的应用领域是在陶瓷材料的烧结方面[1]。
产成等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。

粉末冶金***成型纳米材料
致密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。根据中国机协粉末冶金***协会对53家企业统计数据显示,2010年中国粉末冶金零件行业实现主营业务收入48。利用SPS技术,由于加热速度快,烧结时间短,可显著***晶粒粗化。例如:用平均粒度为5μm的TiN粉经SPS烧结(1963K,196~382MPa,烧结5min),可得到平均晶粒65nm的TiN密实体[3]。文献[3]中引用有关实例说明了SPS烧结中晶粒长大受到极大限度的***,所制得烧结体无疏松和明显的晶粒长大。
MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0而压制性能欠佳,其综合性能与旋淬法制备的非晶薄带相近,难以作为高强度结构材料使用[39]。尤其现代金属粉末3D打印[1-2],集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,使得粉末冶金制品技术成为跨更多学科的现代综合技术。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。
SPS作为新一代烧结技术有望在这方面取得进展,文献[40]中利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样(10mm×2mm),磁非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、bing器、生物、新能源、信息和核工业等领域,成为新材料科学中具发展活力的分支之一。
?粉末冶金技术工艺过程
粉末冶金技术工艺过程
一、粉料制备与压制成型
常用机械粉碎、雾化、物理化学法制取粉末。制取的粉末经过筛分与混合,混料均匀并加入适当的增塑剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。在SPS产品的性能测试方面,需要建立与之相适应的标准以及方法。压力越大则制件密度越大,强度相应增加。有时为减小压力和增加制件密度,也可采用热等静压成型的方法。
二、烧结
将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合,提高了粉末冶金制品的强度,并获得与一般合金相似的***。我们保守估计,未来车用粉末冶金国产化的替代率占据目前单车用量的6%-7%。经烧结后的制件中,仍然存在一些微小的孔隙,属于多孔性材料。
三、后处理
一般情况下,烧结好的制件能够达到所需性能,可直接使用。但有时还需进行必要的后处理。如精压处理,可提高制件的密度和尺寸形状精度;对铁基粉末冶金制件进行淬火、表面淬火等处理可改善其机械性能;为达到润滑或耐蚀目的而进行浸油或浸渍其它液态润滑剂;将低熔点金属渗入制件孔隙中去的熔渗处理,可提高制件的强度、硬度、可塑性或冲击韧性等。利用SPS技术,由于加热速度快,烧结时间短,可显著***晶粒粗化。