




数控车床故障
1、实用诊断技术 此诊断是由维护人员通过自己的感觉和经验对数控机床的故障进行诊断。运用实用诊断技术的诊断过程因故障类型而异,各种方法无先后之分,可穿插或同时进行,应综合分析,方能取得更好的效果。 实用诊断技术不需要复杂昂贵的仪器,可随时随地进行诊断,且快速、便捷、准确性较高,特别适合对机床进行初步诊断。9、生产准备工作复杂由于整个加工过程采用程序控制,数控加工的前期准备工作较为复杂,包含工艺确定、程序编制等。
2、现代诊断技术 此诊断是利用诊断仪器和数据处理对机床机械装置的某些特征参数,如振动、噪声和温度等进行测量, 数控车床厂家将测量值与规定的正常值进行比较,以判断机械装置的工作状态是否正常,从而对机械装置的运行状态进行预报和预测;并可进一步对机械装置的故障原因、部位和故障的严重程度进行定性和定量的分析。利用现代诊断技术可在机械装置发生故障的初期,及时发现故障的部位,并进行维护,从而可避免机械零件的进一步损坏。现代诊断技术如今已得到了不断的推广和应用。数控车床加工在数控车床还未达到普及使用的条件下,一般应把毛坯件上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。
数控车床的编程技巧
在低压电器中,存在大量的短销轴类零件,其长径比大约为2~3,直径多在3mm以下。由于零件几何尺寸较小,普通仪表车床难以装夹,无法保证质量。如果按照常规方法编程,在每一次循环中只加工一个零件,由于轴向尺寸较短,造成机床主轴滑块在床身导轨局部频繁往复,弹簧夹头夹紧机构动作频繁。长时间工作之后,便会造成机床导轨局部过度磨损,影响机床的加工精度,严重的甚至会造成机床报废。而弹簧夹头夹紧机构的频繁动作,则会导致控制电器的损坏。要解决以上问题,必须加大主轴送进长度和弹簧夹头夹紧机构的动作间隔,同时不能降低生产率。开机时,应使刀库和机械手空运行,检查各部分工作是否正常,特别是各行程开关和电磁阀能否正常运作。由此设想是否可以在一次加工循环中加工数个零件,则主轴送进长度为单件零件长度的数倍 ,甚至可达主轴大运行距离,而弹簧夹头夹紧机构的动作时间间隔相应延长为原来的数倍。
机床参考点的调整有4种方式:
1.手动回原点时,回原点轴先以参数设置的快速移动速度向原点方向移动;当减速挡块压下原点减速开关时,回原点轴减速到系统参数设置的较慢参考点***速度,继续向前移动;当减速开关被释放后,数控系统开始检测编码器的栅点或零脉冲;机床在执行具体某个工序加工时,机床内各相关部件移动的位置和方向。当系统检测到一个栅点或零脉冲后,电动机马上停止转动,当前位置即为机床零点。
2.回原点轴先以参数设置的快速移动的速度向原点方向移动;当减速挡块压下原点减速开关时,回零轴减速到系统参数设置较慢的参考点***速度,轴向相反方向移动;当减速开关被释放后,数控系统开始检测编码器的栅点或零脉冲;传感器数控车床十分重要的组成之一,没有传感器数控车床将不能数控而只能说是手动车床。当系统检测到一个栅点或零脉冲后,电动机马上停止转动,当前位置即为机床零点。
3.回原点轴先以参数设置的快速移动的速度向原点方向移动;当减速挡块压下原点减速开关时,回零轴减速到系统参数设置较慢的参考点***速度,轴向相反方向移动;当减速开关被释放后,回零轴再次反向;当减速开关再次被压下后,回零轴以寻找零脉冲速度运行,数控系统开始检测编码器的栅点或零脉冲;每天下班做好机床清扫卫生,清扫铁屑,擦静导轨部位的冷却液,防止导轨生锈。当系统检测到一个栅点或零脉冲后,电动机马上停止转动,当前位置即为机床零点。
如何处理伺服控制系统振荡问题?
1.有些数控伺服系统采用的是半闭环装置,而全闭环伺服系统必须是在其局部半闭环系统不发生振荡的前提下进行参数调整,所以两者大同小异,本文只讨论全闭环情况下的参数优化方法。
2. 在伺服系统中有参考的标准值,例如FANUC0-C系列为3000,西门子3系统为1666,出现振荡可适当降低增益,但不能降太多,因为要保证系统的稳态误差。
3.负载惯量比一般设置在发生振动时所示参数的70%左右,如不能消除故障,不宜继续降低该参数值。
4. 比例微积分器是一个多功能控制器,它不仅能有效地对电流电压信号进行比例增益,同时可调节输出信号滞后成超前的问题,振荡故障有时因输出电流电压发生滞后成超前情况而产生,这时可通过PID来调节输出电流电压相位。
5.以上讨论的是有关低频振荡时参数优化方法,而有时数控系统会因机械上某些振荡原因产生反馈信号中含有高频谐波,这使输出转矩里不恒定,从而产生振动。对于这种高频振荡情况,可在速度环上加入一阶低通滤波环节,即为转矩滤波器。