




管壳式换热器作为重要的换热设备,在石油化工生产领域广泛应用,其换热性能对这些领域的工艺流程影响较大。目前,油田三次采油中大量应用新型聚合物,导致管壳式换热器结垢明显增多,造成换热热阻增加、换热性能降低;并且,污垢中腐蚀性介质腐蚀金属管壁,导致其穿孔,即形成管壳式换热器泄漏、致使物料污染。快速有效识别管壳式换热器结垢和泄漏故障是缩短维修周期、降低更换换热管件的基本保障,而管壳式换热器结垢和泄漏的传热特性是开发相关技术的关键所在。获取管壳式换热器结垢和泄漏的传热特性,对基于热工参数检测管壳式换热器的结垢和泄漏的相关技术发展具有重要意义。本文以管壳式换热器结垢和泄漏的传热特性为研宄目标,对管壳式换热器结垢及泄漏模型、求解方法,管壳式换热器结垢及泄漏预测模型,现场试验方法进行了研宄。本文以管壳式换热器结垢和泄漏的传热特性为研宄目标,对管壳式换热器结垢及泄漏模型、求解方法,管壳式换热器结垢及泄漏预测模型,现场试验方法进行了研宄。
换热器是油田化工和其他许多工业部门广泛应用的一种通用工艺设备,其中管壳式换热器在石油化工行业中应用尤为广泛。而管壳式换热器成本较高,其热工性能决定着后期运行成本。为此,国内外众多学者对其流动传热进行了大量的研究。大庆油田拥有大量的管壳式换热器,其性能直接影响的处理过程和油田节能减排的落实程度,而随着含水率增加,换热器结据率明显,易造成其壁面的结塘甚至堵塞,并且由于污拒会对换热器材料腐蚀,容易导致壁面穿孔造成物料泄漏和损失,甚至产生隐患。近年来,粗加工装置换热器内漏、结塘堵塞问题越来越突出,尤其换热器,已严重影响装置的平稳运行。为消除换热器结据和泄漏造成的损失,油田管理部门每年都对换热器进行清洗、堵漏作业,但目前尚无有效手段快速地评价换热器的结塘和泄漏情况,导致需要针对每一台换热器进行处理,造成管理成本的增加。而管壳式换热器的流动传热特性是评价其结塘、池漏的关键,也是进行有效预测的前提条件。
建立了一种复杂的数学模型,用于预测套管式换热器内流体的流动及传热特性的数学模型,包括计算流体力学模型和计算传热学模型。其中,计算传热学模型中的瑞流扩散系数是利用温度方差和温度方差耗散率来求解,而不是利用通常采用的数假设值或实验测定值来求解。分析换热器的物理模型,对模型进行适当的简化,分别对换热器的管侧和壳侧的温度场进行分析,研宄传热管束内部的传热过程,同时分析换热器壳侧不同位置处的换热情况。此外还和流体的流动速度有关,介质粘性越强、循环(流动)越慢,则压降越大。对换热器的出口平均温度进行分析,分析出口平均温度与设计温度之间的误差,评价换热器的换热性能。对换热器壳侧的速度场进行研究,分析换热器的结构对自然循环的影响,并提出相关的意见对换热器进行优化分析。
随着结塘厚度的增加,换热器管程出口温度升高,壳程出口温度降低。由于换热面污据的存在,增大了换热面的导热热阻,减小了其导热系数,使管壳程的传热系数降低,从而影响了换热器的换热性能。***终导致换热管程出口温度升高,壳程出口温度降低。采用换热器的传热系数作为换热器换热效果的评价标准,以此来对比各组结坂工况的换热器传热性能。随着污振厚度的增加,换热器的传热系数降低,这是由于污塘的存在,导致了换热面的导热热阻增加,导热系数减小,导致的换热器传热系数降低,换热效率减小。而管壳式换热器的流动传热特性是评价其结塘、池漏的关键,也是进行有效预测的前提条件。这说明:随着换热面结塘厚度旳增加,换热器的传热性能降低。且随着结拒厚度的增加,换热器传热性能的这种降低趋势越发平缓。