




离心风机的风量调节方式很多,有进、出口风阀调节,蜗线风阀调节,进口叶片调节,动翼调节,转数调节等方式。对于各种不同类型的风机,由于调节方式不同,所得的节能效果差别很大。
1、风阀调节 离心风机出口风阀调节是改变管网的特性,而不是改变风机的特性。风量调节范围通常在风机额定性能曲线下方的所有工况。由于用人为加大管网阻力的方法来改变管***性,压降消耗在关小风阀时产生的附加阻力上,调节的经济性差。 进口风阀调节,当配管设置在风机的吸入侧时,其调节原理与出口风阀相同;但当配管设置在风机的排风侧时,它通过改变风机的进口压力,来改变风机的性能曲线,故调节的经济性好;而蜗线风阀调节,是通过变换风机的出口面积,来改变风机的特性,相对于风量的减少,功率变化小,节能不显著。这两种调节,原则上可使用在额定曲线下的所有工况,能使喘振点向小流量方向偏移,因此,广泛地应用在一般具有固定转速的风机上。离心式风扇与其他风扇的不同之处在于其工作介质流入和流出风扇的轴向,需要在离心力的作用下工作。
离心风机的振动是用户和制造厂家共同关注的问题。振动超标,会使轴承温度上升,磨损加剧,严重的还会使地脚螺栓断裂,轴承箱体开裂,甚至会使叶轮开裂和解体。
减小振动的办法是进行动平衡:叶轮平衡和整机动平衡。
为什么叶轮在动平衡机上达到标准,还要进行整机动平衡,因为风机的振动是由周期性的干扰力产生。根据机械振动的公式:X=-F/K,在弹性形变范围之内,振动的大小X与干扰力F成正比,与系统的刚性K成反比。
1 风机所受的主要干扰力
风机运行时受到空间力系的作用。在这一力系中,不做周期性变化的力,不产生干扰力,如重力、轴承座对轴承的反作用力等等,它们称为静反力。周期性的干扰力称为动反力。周期性干扰力包括3种。
1.1 偏心干扰力
由于制造误差和材料不均匀等因素,使叶轮的质心不在叶轮的圆心上,有一个偏移量e(e=OP,方向从O到P)。就使得叶轮运转时产生一个离心力,也叫偏心干扰力(见图1)。假设叶轮转子的质量为m,角速度为ω,则偏心干扰力F=meω。而ω=nπ/30。低压离心风机:全压不超过1000Pa中压离心风机:全压在1000-3000Pa之间高压离心风机:全压大于3000Pa注意:全压可以很容易地理解为风扇发出的风强度。
例m=5 000㎏
e=0.02mm=0.02×10-3 m
n=980r/min
则F=5 000×0.02×10-3×[(980×π)/30]2≈1 053.2N
干扰力F还是相当大的。