









20世纪70年代,Gahly等首ci提出了将气化技术用于生物质这种含能密度低的燃料。生物质气化是生物质转化过程xin的技术之一。实际净化效果并不太好鉴于国情,我国目前的生物质气化燃气净化技术主要是以湿法除焦油为主.国内一些科研单位已研究出符合中国国情的湿法燃气技术设备。生物质原料通常含有70℃~90℃挥发分,这就意味着生物质受热后,在相对较低的温度下就有相当量的固态燃料转化为挥发分物质析出。由于生物质这种独特的性质,气化技术非常适用于生物质原料的转化。不同于完全氧化的燃烧反应,气化通过两个连续反应过程将生物质中的碳的内在能量转化为可燃烧气体,生成的高品位的燃料气既可以供生产、生活直接燃用,也可以通过内燃机或燃气轮机发电,进行热电联产联供,从而实现生物质的清洁利用。生物质气化的一个重要特征是反应温度低至600~650℃,因此可以消除在生物质燃料燃烧过程中发生灰的结渣、团聚等运行难题。
“九五”期间进行1MWe的生物质气化发电系统研究,旨在开发适合中国国情的中型生物质气化发电技术。生物质气化技术在国内的发展与现状我国对生物质气化技术的深入研究始于上世纪8O年代。1MW的生物质气化发电系统已于1998年10月建成,采用一炉多机的形式,即5台200kWe发电机组并联工作,2000年7月通过中科院鉴定后投入小批量使用。该系统在很多方面比200kWe气化发电有了改善,但由于受气化效率与内燃机效率的限制.简单的气化一内燃机发电循环系统效率低于18%,单位电量的生物质消耗量一般大于1.2kg(dry)/(kW·h)。以中科院广州能源所为主承担的“十五”863项目——4MWe的生物质气化发电装置正处于研究开发之中。
裂解净化技术是将生物质的燃气中焦油利用某种方法使其裂解为可利用的小分子可燃气体。其方法细分为热裂解、催化裂解及电裂解。中热值(MediumCV)l2~18MJ/Nm3(使用氧气和蒸汽)。热裂解法在1100℃以上才能得到较高的转换效率.在实际应用中实现较困难;若在气化过程中加入裂解催化剂,即使在750~900℃温度下,也能将绝大部分焦油裂解成小分子的碳氢化合物。催化裂解法可将焦油转化为可燃气,既提高系统能源利用率,又彻底减少二次污染。从20世纪80年代起,生物质气化过程中加入催化剂而得到无焦油燃气在国外已引起广泛关注.并已投入商业运行。
氧化反应生物质在氧化层中的主要反应
1、氧化反应 生物质在氧化层中的主要反应为氧化反应,气化剂由炉栅的下部导入,经灰渣层吸热后进入氧化层,在这里通过高温的碳发生燃烧反应,生成大量的 ,同时放出热量,温度可达1000~1300摄氏度, 在氧化层进行的燃烧均为放热反应,这部分反应热为还原层的还原反应,物料的裂解及干燥提供了热源。 2、还原反应。而并流式气化炉是指气化原料与气化介质在床中的流动方向相同这两种气化炉按照气化介质的流动方向不同又分别称为上气式、下气式气化炉。在氧化层中生成的 和碳与水蒸气发生还原反应。 3、裂解反应区。氧化区及还原区生成的热气体在上行过程中经裂解区,将生物质加热,使在裂解区的生物质进行裂解反应。 4、干燥区。经氧化层、还原层及裂解反应区的气体产物上升至该区,加热生物质原料,使原料中的水分蒸发,吸收热量,并降低产生温度,生物质气化炉的出口温度一般为100~300℃