





无线传感器节点数据采集传输技术
无线传感器节点数据采集传输技术包括WIFI,433MHZ,Zigbee振动传感器,,ZigBee的特点是低功耗、高可靠性、强抗干扰性,布网容易。 通过无线中继器可以非常方便地将网络覆盖范围扩展至数十倍。在振动传输过程中,无线WiFi振动传感器,现场可能会出现输出为零等等问题。但相比于WiFi技术,Zigbee是低传输速率的应用。2WiFi的特点是数据传输速率高,并且支持"永远在线"功能。但功耗大可靠性及性能低。WiFi设备的睡眠唤醒时间一般需要3~5秒。
无线传感器公司
BLE是一种与传统蓝牙技术不同的低功耗协议。BLE使用2.4GHz频段传输少量信息。其中Zigbee、WiFi和433MHz无线技术都属于近距离无线通讯技术,并且都使用I***免执照频段。与WiFi相比,无线标准的使用成本更低;然而,在通过墙壁或远距离发送数据时也存在同样的问题。此外,由于不少其他设备和标准使用2.4GHz频段,BLE容易受到信号干扰。ZigBee是一种无线标准,它依赖于Mesh的网络来支持单个网络中的大量节点(gt;65k)。ZigBee对于不需要太多带宽的无线传感器网络来说是很好的选择。Zigbee的一个缺点是,为了共享信息以进行处理,某些传感器必须始终处于工作状态。因此,Zigbee的功耗还是偏高的。
无线传感器
在公用事业管理方面,无线传感器有助于实现关键系统之间的自动化通信,并经行预测性报修。例如,可以在墙上安装漏水传感器,以检测水管故障或冬季可能爆裂的管道。NS-3能够按需编辑网络拓扑和网络环境,模拟网络数据的传输,并输出性能参数。服务器机房和数据中心正在使用无线绳索传感器来检测计算机硬件附近是否存在水珠。无线传感器还支持灾害管理工作。在桥梁上安装无线传感器,可以探测超过某一阈值的水位,从而表明该地区有可能出现山洪。大型机械工厂正在使用无线振动传感器,在设备故障发生前进行预测。
WSN中使用的两种主要拓扑结构:
B) 网状网络:在网状网络拓扑结构中,如图5所示,节点与许多冗余互连连接在一起。本文给出以LoRa为代表的LPWAN技术,提出基于该技术实现的网络覆盖性能评估。如果某个节点故障,有许多其他方法让两个节点进行通信。这种拓扑具有较好的可靠性,但在电流消耗和软件开销方面付出代价非常大。这种拓扑结构可以通过所有权或者Zigbee标准来实现。
结论。WSN每天都在发展,而随之出现的新标准也越来越多。并对设备潜在故障的发展做出早期预报,针对出现故障原因、产生部位、危害程度等进行识别和评价,预测潜在故障的发展趋势,迅速地排查故障源,提出维护对策或建议,从而提早的减少或者避免故障的发生。然而,需要注意的是大多数这些标准都还没有达到成熟的水平。相反,它们都还处在刚刚起步的阶段。一位严谨的 WSN 设计工程师会在架构以及特定标准的能力方面深入研究其网络需求,以便满足电流消耗、蕞大允许节点数、电池寿命、数据速率和工作频率等关键要求。