





磁珠用在哪里呀?

主要功能是消除传输线结构(电路)中存在的射频噪声。射频能量是叠加在DC传输电平上的交流正弦波分量。DC分量是所需的有用信号,而射频能量是沿线传输和辐射的无用电磁干扰。为了消除这些多余的信号能量,芯片磁珠被用作高频电阻(衰减器),允许DC信号通过并过滤掉交流信号。一般来说,高频信号高于30兆赫兹,然而,低频信号也受到芯片磁珠的影响。
磁珠具有非常高的电阻率和磁导率,相当于电阻和电感的串联,但电阻和电感都随频率而变化。它具有比普通电感更好的高频滤波特性,并且在高频时呈现电阻,因此在相对较宽的频率范围内可以保持较高的阻抗,从而提高调频滤波效果。这些理论可能不会被特别理解,但在实际工程中,你会突然意识到。
片式磁珠

芯片磁珠的功能主要是消除传输线结构(印刷电路板电路)中存在的射频噪声。射频能量是叠加在DC传输电平上的交流正弦波分量。DC分量是必需的有用信号,而射频能量是无用的电磁干扰传输和沿线辐射。为了消除这些多余的信号能量,芯片磁珠被用作高频电阻(衰减器),允许DC信号通过并过滤掉交流信号。一般来说,高频信号高于30兆赫,但低频信号也受芯片磁珠的影响。
芯片磁珠不仅具有小型化和轻量化的优点,而且在射频噪声的频率范围内具有高阻抗特性,可以消除传输线中的电磁干扰。芯片磁珠可以降低DC电阻,以避免有用信号的过度衰减。芯片磁珠还具有显著的高频特性和阻抗特性,可以更好地消除射频能量。在高频放大电路中也可以消除寄生振荡。有效工作频率在几兆赫到几百兆赫之间。
在过高的DC电压下,芯片磁珠的阻抗特性会受到影响。此外,如果工作温度升高过高或外部磁场过大,磁珠的阻抗将受到不利影响。
磁珠的选用

承前:从去耦半径出发,通过去耦半径的计算,让大家直观的看到我们常见的电容的“有效范围”问题。
本节:讨论滤波电容的位置与PDN阻抗的关系,提出“全局电容”与“局部电容”的概念。能看到当电容呈现“全局特性”的时候,电容的位置其实没有想象中那么重要。
启后:多层板设计的时候,电容倾向于呈现“全局特性”,“电源加磁珠”的设计方法,会影响电容在全局范围内起作用。同时电源种类太多,还会带来其他设计问题。
通过上一篇文章,我们知道平常“耳熟能详”的电容去耦半径理论,对PCB设计其实没有什么指导意义。0.1uf的电容去耦半径足够大,设计中参考这个值没有用处,工程师还是会“尽量”把0.1uf电容靠近芯片的电源管教放置。PCB设计师需要更有效的理论来指导电容的布局设计。
既然简单的用四分之一波长理论推算的电容去耦半径不起作用,那么电容放置得离芯片电源管脚比较远,还会有哪些影响呢?很多人都答对了,影响安装电感。