




用于螺柱焊机的直流焊接电源应具有以下特点:
a、 焊接电源应具有下降的静外特性。只有这样才能维持电弧的稳定性,保证焊接质量。
b、 焊接电源应有引弧电流(40~50A)和较高的空载电压(70~100V),以确保引弧成功率。
c、 要有较高的负载电压。按弧焊电源下降特性的定义,当焊接电流≥600A时,其负载电压应保持44V不变。在施工现场使用的焊机,其焊接电缆较长,有的长达50m,电压降很大。如果不增加负载电压加以补偿,就会降低其焊接能力,若不按照ISO14555规定配制焊接电缆的截面积,情况就会更加严重或无法焊接。这也是不同厂家制造的同一电流等级的焊机,其焊接螺柱的较大直径有较大差异的原因之一。
d、 焊接电流要有陡升的前沿。螺柱焊接的较大特点是瞬间大电流,因此要求焊接电源在接通后的32ms之内,焊接电流应达到其峰值。
电源要有较小的内阻抗。焊接电源主电路的电气绝缘,采用H级耐热等级与B级相比,具有体积小重量轻的优点,倍受人们的推崇。但深入分析后发现,也并非无缺。GB11021规定:H、B级耐热等级的较高温度分别为180℃和130℃,H级比B级允许的温度约高40%。也就是说,在主电路设计时,其线圈的电流密度可以大幅度提高,以减小导线的截面积。随之而来的是导线的电阻,也即电路的阻抗增加。这对于大电流焊接的螺柱焊机而言,则是致命的缺点。假如焊接电源主电路的绝缘由B级改为H级,次级回路所有导线截面积的减小而导致总电阻的增加那怕只有0.006Ω,按2500A焊接电流计算,其增加的功耗为37.5kw,再加上主变压器初级增加的功耗,则是相当可观的。焊接电源主电路的功耗增加,势必减小输出的焊接功率,使焊接能力下降,这便是体积、重量的减小付出的代价。也就是说,焊接同一直径的螺柱,H级比B级绝缘的焊机需要更高的功率才能达到同一效果,效率明显下降。成都斯达特焊接研究所研制的RST-3150-3电弧螺柱焊机,B级绝缘,能焊接d=30mm的焊钉,这是同等级的H级绝缘的电弧螺柱焊机难以达到的。
供电的电源柜(箱)应有足够的容量,电弧螺柱焊机的负载持续率很低,一般都小于15%,消耗的平均功率较低,但瞬间功率却很大,大直径螺柱焊接时,瞬间功率甚至超过300kw,这就要求供电的电源柜(箱)应有足够的容量。
螺柱焊是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。
特点
1.非常节省时间和成本所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。
2.不断扩展结构设计的应用潜力在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。
储能式螺柱焊机的发展经
储能式螺柱焊机的发展经历的三个阶段:
1. 回路控制:即焊机的运行完全有模拟电路控制,电压调节为旋钮无级调节,无数码管显示工作菜单及电压。目前国内大多数已国产化的螺柱焊机设备采用此种控制方式。其优点为产品成本及技术含量较低,产品较易被模仿,缺点是由于采用旋钮无级调节电压,当环境温度或工作温度发生变化时电压随之变化,不易控制焊接效果的一致性。
2. 回路控制带电压检测:即螺柱焊机在一阶段基础上,在充电部分加入充电电压检测模块。电压调节为旋钮无级调节,数码管显示当前充电电压,无工作菜单。部分进口螺柱焊机采用此种控制方式。其优点是可以直观了解当前电压值,生产成本及技术含量相对较低,其缺点同样是在环境温度或工作温度发生变化时,充电电压随之变化,需通过旋钮调节调节达到要求电压值。
3. 单片机智能控制:此种控制方式与前两个阶段有较大的不同,由数字电路控制电容的充电,放电,掉电自动补偿等功能,采用触摸式按键,数码管显示工作菜单,以及当前额定充电量,部分进口螺柱焊机采用此种控制方式,国内部分厂家也正在研制。该阶段螺柱焊机的成本及技术含量均较高,其优点是人机交流界面友好,操作方便,充电精准,当电量自然流失后会得到自动补偿,不受温度影响。