




附浓缩-催化燃烧技术针对电子、包装印刷、化工、制漆、喷漆、制鞋、箱包及家具制造业等行业产生的有机废气污染进行专项治理,采用***技术、精良工艺及现代化设备实施,解决了大风量、低浓度有机废气在治理技术上存在的难题。处理风量从每小时几千到几十万立方米。

原理简介
吸附浓缩-催化燃烧有机废气处理工艺,采用阻力小的蜂窝活性炭为VOCs吸附材料,将废气中的VOCs吸附达标排放。脱附浓缩的VOCs经催化低温燃烧,转化为洁净的CO2和H2O ,达标排放。吸附床一般配置两台以上,交替吸脱附,当一台吸附床吸附的VOCs达到饱和吸附量时,转入脱附再生工序;同时,另一台吸附床转入吸附净化工序。脱附是通过将小风量催化燃烧放热后的烟气(约吸附风量的1/10)引入待脱附的吸附床,使吸附的VOCs以高浓度脱附下来,随后进入催化燃烧室进行低温无焰式催化燃烧,燃烧产物为CO2和H2O。浓缩后的VOCs催化燃烧放热足以维持自身催化反应,运行以后不需额外提供能量,节能显著。蜂窝活性炭显著特点是阻力低,因此非常适合于大风量、低浓度有机废气的处理。
吸附-催化氧化装置
该废气处理工艺通过控制,可使脱附气中的VOCs浓度较吸附浓缩前提高10倍以上,且低于25%LEL。通过以上两种净化工艺的组合,使大风量、低浓度的有机废气变为小风量、高浓度废气处理。催化效率达99%以上,保证了VOCs达标排放。同时VOCs燃烧热能得到充分利用,具有环保、***、处理费用低等特点。

吸附-催化燃烧法原理
吸附浓缩-催化燃烧法,该设备采用多气路连续工作,设备多个吸附床可交替使用。含有机物的废气经风机的作用,经过活性炭吸附层,有机物质被活性炭特有的作用力截留在其内部,吸附去处效率达80%,吸附后的洁净气体排出;经过一段时间后,活性炭达到饱和状态时,停止吸附,此时有机物已被浓缩在活性炭内,之后按照PLC自动控制程序将饱和的活性炭床与脱附后待用的活性炭床进行交替切换。CO(催化氧化设备)自动升温将热空气通过风机送入活性炭床使碳层升温将有机物从活性炭中“蒸”出,脱附出来的废气属于高浓度、小风量、高温度的有机废气。
催化燃烧法:VOC-CH 型有机气体催化净化装置,是利用催化剂使***气体中的可燃组分在较低的温度下氧化分解的净化方法。对于 CnHm 和蒸汽氧化分解生成CO2和H2O并释放出大量热量。

活性炭脱附出来的高浓度、小风量、高温度的有机废气经阻火除尘器过滤后,进入的板式热交换器,和催化反应后的高温气体进行能量间接交换,此时废气源的温度得到次提升;具有一定温度的气体进入预热器,进行第二次的温度提升;之后进入级催化反应,此时有机废气在低温下部份分解,并释放出能量,对废气源进行直接加热,将气体温度提高到催化反应的温度;经温度检测系统检测,温度符合催化反应的温度要求,进入催化燃烧室,有机气体得到彻底分解,同时释放出大量的热量;净化后的气体通过热交换器将热能转换给出冷气流,降温后气体由引风机排空。
有机物利用自身氧化燃烧释放出的热量维持自燃,如果脱附废气浓度足够高,CO正常使用需要很少的电功率甚至不需要电功率加热,做到真正的节能、环保,同时,整套装置安全、可靠、无任何二次污染
沸石分子筛转轮吸附浓缩
沸石是一种晶体结构的矿石,而我们用到的沸石分子筛就属于沸石的化合物。
沸石分子筛转轮分为三部分:吸附区、脱附区和冷却区,每个部分都是由耐热、耐溶剂的密封材料分隔开来。沸石转轮可以在各个功能区域内连续运转,同步进行吸附脱附冷却。
VOCs通过前端的过滤器进行初步过滤后,到沸石分子筛转轮的吸附区。在吸附区(吸附区面积为S1)有机废气中VOCs被沸石分子筛吸附除去,有机废气被净化后从沸石分子筛转轮直接排出,通过烟囱进入空气。

吸附在转轮上的VOCs,在脱附区经过约200℃小风量的热风处理而被脱附、浓缩,浓缩倍数一般为5~25倍。浓缩倍数n=吸附面积*吸附速度/脱附面积/脱附速度。
脱附后的沸石转轮在冷却区被冷却。经过冷却区的空气,经过加热后作为再生空气使用,达到节能的效果。以程反复循环,达到废气净化的目的。
催化燃烧
催化氧化燃烧利用转轮经过脱附区后,VOCs 进入脱附管路,经过脱附风机进入换热器换热,催化燃烧产生的部分热量经过换热被VOCs重新带入催化燃烧器内,加热升温进行催化剂催化处理,催化燃烧技术可以在较低温度(300℃~500℃)下实现对VOCs95%以上净化效率,完全反应后生成CO2和H2O,同时放出大量热,产生的热量一部分通过混合罐进入转轮脱附区对吸附在转轮上的VOCs进行脱附;一部分进入换热器换热,换热后的部分热量通过烟囱排出,另一部分被经过换热器的VOCs重新带入催化燃烧器。反复循环利用,可以的降低能量损耗,同时实现废气自我催化分解的效果。