






排风机叶片断裂的主要原因是叶片两侧受力不平衡。在解决这一问题的过程中,首先要提高风机叶片的质量。在叶片设计和制造过程中,必须非常仔细地选择原材料,选用耐腐蚀性和耐压性强的原材料。为解决风机叶片断裂问题,应尽量避免失速或喘振。由于轴流风机长期处于失速状态,容易引起叶片断裂,也会对主要设备部件造成不同程度的损坏。解决轴承温度高的问题主要有三种策略:一是合理使用润滑油和润滑剂,降低轴承温度。每台排风机所需的润滑油和润滑剂的数量是不同的,所以在使用过程中必须根据实际情况加以利用。润滑油不能用得太少或太多,否则会导致轴承温度过高。二是加强引风机的冷却。有效的方法是在轴承两侧安装压缩空气冷却装置。如果温度较低,需要关闭压缩空气装置,这样可以节省一些资源。但当温度升高时,必须打开压缩空气装置进行冷却。第三,轴承箱内缸与排风机轴承外套之间的间隙应适当留出。这就要求设计过程中必须进行非常严格的测量,并进行的计算,以使两者之间的间隙合适,不会影响轴承的运行。
排风机降噪原理和穿孔模型
降噪原理在风机运行过程中,产生的主要噪声是机械噪声和空气动力噪声。其中,排风机机械噪声主要包括电机噪声、结构振动噪声等。优化结构以降低机械噪声是必要的。空气动力噪声按产生原因可分为旋转噪声和涡流噪声。旋转噪声是由叶片与气流相互作用引起的压力波动引起的。它也被称为离散噪声或叶片通过频率噪声。产生涡流噪声的主要原因是由于阻力引起的叶片边界层涡流、随主流沿叶片后缘脱落的涡流和叶尖放电。排风机叶片穿孔减噪是应用穿孔射流***非工作面涡流和分离的原理。当边界层流体的动能能够克服叶片表面的摩擦力时,叶片表面可能形成回流。回流被主流气体带走,导致涡流脱落。涡流以噪声的形式不断地产生和释放出大量的能量。当叶片穿孔时,部分叶片工作面气流流向非工作面,非工作面气流获得更多动能,克服叶片表面的摩擦,***涡流的产生和脱落。
在排风机稳态模拟完成后,将稳态模拟结果作为初始场。采用滑动网格模型对非定常流动进行了数值模拟。边界条件与稳态模拟相同。湍流模型采用Les模型,子格子模型采用***agorinsky-Lilly模型。噪声模拟采用噪声模拟模型FW-H,根据Lighthill方程的推导过程,单极、偶极和四极源、气流和旋转叶片的周期性撞击产生的噪声属于单极源,气流和旋转叶片相互作用形成的不稳定反作用力产生的噪声属于单极源。物体属于偶极源,流场总粘应力产生的噪声属于四极源。采用RNGK-E湍流模型计算了排风机的稳态流场。在此基础上,利用LES软件对排风机的瞬态流场进行了计算,并引入了FW-H噪声模拟模型对风机的流场进行了计算。模拟中的噪声接收点与***标准规定的噪声测试中的传声器位置一致。噪声测点距风机出口表面中心1米,测点与出口中心点的连接线距出口表面45度。为了避免电机对实际测量结果的影响,一般的监测点设在进口侧。本文设置了四个监测点,即监测点1:机器进口面为45度,相距1米;监测点2:风机进口;监测点3:两级叶轮中部;监测点4:风机出口。
