步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。矢量控制矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多***知识。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
基本原理
工作原理通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。以60步进电机计划***供给的***常识和经历为依据,将***体系与传统优化计划相联系,为处理优化算法初始值可行性疑问供给了一条有利路径,然后保证优化计划能够顺利进行。该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。当定子的矢量磁场旋转一个角度。转子也随着该磁场转一个角度。每输入一个电脉冲,电动机转动一个角度前进一步。它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。改变绕组通电的顺序,电机就会反转。所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。
文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度 , 通过反馈和自适应处理 ,按照优化的升降运行曲线 , 自动地发出驱动的脉冲串 ,提高了电机的拖动力矩特性 ,同时使电机获得更精1确的位置控制和较高较平稳的转速 。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。 [2] 目前 ,很多学者将自适应控制与其他控制方法相结合 ,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器 ,确保了转动脉矩的1大化补偿及伺服系统低速的跟踪控制性能 。文献实现的自适应模糊 PID 控制器可以根据输入误差和误差变化率的变化 , 通过模糊推理在线调整 PID参数 ,实现对步进电机的自适应控制 , 从而有效地提高系统的响应时间 、计算精度和抗干扰性 。 推导出了二相混合式步进电机 d-q 轴数学模型 ,以转子永磁磁链为定向坐标系 ,令直轴电流 id =0 ,电动机电磁转矩与 i q 成正比 , 用PC 机实现了矢量控制系统 。6、电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控制成本。系统中使用传感器检测电机的绕组电流和转自位置 ,用 PWM 方式控制电机绕组电流 。文献推导出基于磁网络的二相混合式步进电机模型 , 给出了其矢量控制位置伺服系统的结构 ,采用***网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿 ,通过1大转矩/电流矢量控制实现电机的控制 。