液体电阻起动器一般用于冶金,建材等行业的风机,球磨机等70-6000KW的大中型绕线式交流异步电动机的起动器,它是通过电机转子回路串入液体电阻,进而实现电机无冲击地平滑地起.
在平常的日常维护要注意以下几条:
1、要定期检查水箱内液面是否过低。不要低于水箱盖板10cm以下,否则要及时加水。
2、因水质、电解液挥发等原因,起动器用时间长后可能会出现起动性能变差的现象——起动电流偏大、或起动完毕后电机达不到额定转速(即电机起动不了),此时只须加些水(前一种情况)或稍加点电解粉(后一种情况)就行了。
3、要定期检修主电机转子星点接触器(又称短接接触器),使其能可靠吸合,以保障起动器的安全使用和主电机的安全运行。
4、当工厂停产大修后重起磨机前或电力线路检修后,一定要首先检查起动器电源相序是否正
5、若起动器空试时正常,而起动电机时液温过高甚至“开锅”(水箱冒水汽),是因电机星点接触器吸合不好所致。应立即停机检修。否则,易引起水箱变形甚至损坏。
在我国北方高寒地区的用户应注意的是,在寒冷的冬季停机一段时间又开机时,须先检查起动器水箱内是否结冰。若结冰,应用加热棒插入水箱内化冰。即使未结冰,也用加热器把液温加热至20℃左右,然后让起动器空试几次(主机不送电)后,再起动电机。11、本起动控制装置占用场地少,起动电流小,起动平稳无冲击,减少外部连线及故障环节,运行可靠,操作方便。否则,起动效果可能会变差,甚至可能起动不了。
水阻柜起动电动机跳闸原因分析
启动过程结束切除水电阻时跳闸
电动机运转50s后切除水电阻,短接真空接触器动作后立即跳闸,故障原因有以下两种:
3.1 水电阻阻值偏大
因溶液渗漏、蒸发使液位下降后补水,或Na2CO3因化学反应减少,都会导致水电阻阻值偏大。在启动运转时,电流表稳定在210A上下,磨机加速声音低 沉,50s内电动机转速达不到90%以上(约75s),所以短接真空接触器闭合时,使负载突然加大,电流有一个很大的阶跃(达到300A),致使电流速断 保护动作跳闸。因此向溶液中添加Na2CO3来降低水电阻阻值是解决办法。采暖设计的技术参数为进水温度为80摄氏度,出水温度为60摄氏度,室温为20摄氏度。理论上应抽取溶液,化验其浓度来计算添加Na2CO3的质量,实际中可根 据现场观测情况,逐步定量添加,观察启动效果,只要满足启动即可。
3.2 电极表面附着污物致使启动电阻偏大
水电阻经过一定时期的使用,电极表面附着污物使得启动电阻偏大,故障现象与水电阻阻值偏大时几乎一样,很不好判别。一般经验是,若启动柜使用5年以上发生此故障现象,则应考虑电极污物原因。8259×△T1.2829(1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时:△T=(95摄氏度+70摄氏度)/2-18摄氏度=64。清洗电极污物的方法可按说明书中用浓度为30%的强酸刷洗即可。
3.3 短接真空接触器三相不同步
短接真空接触器刚闭合差动保护即动作跳闸,但电流表显示只是增大一点,这说明真空接触器三相不同步。调节真空接触器三相同步时,可每相串接一个灯泡,通过 机械杠杆使触点缓慢闭合,观察灯泡的通电状况进行调整,但调节时必须保证触点间隙不能小于规定的小间隙,避免启动时击穿。同时,由于形成液态电阻的局部电液温度过高还会产生气泡甚至电弧光的现象,极不利于起动设备乃至整个系统的正常运行。这个故障很少发生,设备使用至 今仅发生过一次。
现在湖北鄂动机电设备制造有限公司就介绍几种简单的计算方法
(一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。
Q=m×△T的N次方
例如74×60检测报告中的热工计算公式(10柱):
Q=5.8259×△T1.2829
(1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时:
△T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度
Q=5.8259×64.51.2829=1221.4W(10柱)
每柱的散热量为122.1W/柱
(2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时:
△T=(80摄氏度 60摄氏度)/2-20摄氏度=50摄氏度
Q=5.8259×501.2829=814.6W(10柱)
每柱的散热量为81.5W/柱
(3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:
△T=(70摄氏度 50摄氏度)/2-18摄氏度=42摄氏度
Q=5.8259×421.2829=708.4W
每柱的散热量为70.8W/柱
而根据***散热器质量监督检验中心检验报告检测结果汇总显示:
散热量与计算温差的关系式为Q=5.8259×△T1.2629(W)
当△T=64.5摄氏度,散热量Q=1221.4(W)
金属热强度Q=2.0583W/KG摄氏度。