




车牌的定位与校正
本章主要描述的是对已有车牌定位方法的研究,了解它们的算法原理及其优缺点,并提出了一种效果更好适用范围更广的车牌识别系统方法,即将Mean Shift算法运用到车牌识别系统,然后在此基础上对车牌进行校正。
图像的对比度不足是图像处理的过程中经常会遇到的问题。主要的原因是在获取车牌图像时受外界环境的影响。当汽车到达车牌识别区域时,摄像机自动拍照到车牌,制动杆打开,车辆后退,从而进一步智能化社区技术,为车辆带来更多便利和安全。对比度不足的图像会影响到图像的后续处理效果,所以,一般情况下,在进行图像处理前会使用灰度变换的方法来对图像进行对比度增强处理,以达到改善视觉效果的目的。
当今社会,智能交通系统是道路交通的发展趋势。继续发展和不断完善的可视化智能交通监控系统,为实际应用车辆道路运输基础设施的管理系统奠定了良好的基础。智能交通系统,车牌自动识别系统是发展的一个很重要的方向。车牌自动识别技术可应用于道路收费系统,交通管理系统领域,起到节省人力成本,提高工作效率,完善管理制度等。随着汽车在人们的工作、生产和生活中扮演着越来越重要的角色,汽车的保有量也在急速增加。随着汽车数量的迅速增加,车牌识别技术提出了巨大的经济价值和现实意义。
车牌识别技术和定位系统的研究,在我国已经有十余年的发展,该系统目前应用仍处于起步阶段,该系统采用成熟的大规模投资还没有出现,车牌识别系统作为提高交通管理的有效工具,技术水平依然需要完善。当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好适应多变的环境。车牌自动采集和管理及其他相关信息流量管理,园区车辆管理,停车场管理,交jing督察和重大意义等方面,并成为信息处理技术的一个重要的研究课题。车牌的规格,参照公an部在年发布的《中国人民共和国机动车号牌》,中国现行的车牌制度之中,存在四类牌照,按照底色和字色分别为:蓝白、黄黑、白黑或红、黑白。
车牌的底色检测
车牌颜色不是单一的,所以在识别的过程中我们还需要对车牌的颜色予以区分。通过我们对车辆车牌的研究发现,车牌的底色一般为蓝色或者黄色,而车牌上字符的颜色一般为白色或者是黑色。车牌不是单一颜色的,如果是那么我们就没办法识别了,因此,我们需要对车牌的颜色予以区分。但是,目前,任何高科技产品都不能完全取代人类的人工操作,它不能完全取代人类的思维,也不能与人们的思维方式相一致。本设计采用的是RGB 模型检测方法,具体的方法就是将检测得到的像素点与 RGB 模型进行比对,就可以得出车牌的颜色。