





焊接机器人伺服系统的发展过程
焊接机器人
伺服系统的发展过程伺服系统的发展经历了由液压到电气的过程,电气伺服系统根据所驱动电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。结合***化自动焊接在工作当中进行调整,实用性比较突出,如车架类的结构等就能结合实际的需求针对性的调整,满足车架类焊接的需要。交流伺服系统按其采用的驱动电机类型又可分为永磁同步(***型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。由于直流伺服电动机存在电机结构复杂,维修工作量大例如电机的电刷、换向器等则成为直流伺服驱动技术发展的瓶颈。随着微处理技术、大功率电力电子技术的成熟和交流永磁电机材料的发展和应用,电机效率的提高和制造成本的降低,交流伺服系统得到长足发展并将逐步取代直流伺服系统。焊接机器人的运动规划如何进行?
对焊接机器人的运动轨迹进行规划时,需要研究机器人在关节空间和任务空间中的插补以及轨迹生成方法,找到既不能对机器人的硬件系统有所损耗、又要能保证有效率地完成规划路径的轨迹规划算法。
焊接机器人厂家采用了以目标距离为原则的调速方式。除了汽车领域,焊接机器人在能源、建筑、开采、加工、工程、农业、运输、制造业等诸多领域都有着广泛应用,这是由于其稳定性和高精度决定的。目标距离值的确定:当焊接机器人实时关节末端与焊点之间的距离大于机器人主控器所能传递的大距离值时,则目标距离值等于大距离值。当焊接机器人实时关节末端与焊点之间的距离小于机器人主控器所能传递的大距离值时,则目标距离值等于此距离值。

在汽车生产中应用上海焊接机器人批发
焊接机器人目前已广泛应用在汽车制造业,汽车底盘、座椅骨架、导轨、消声器以及液力变矩器等焊接,尤其在汽车底盘焊接生产中得到了广泛的应用。丰田公司已决定将点焊作为标准来装备其日本国内和海外的所有点焊机器人。1990年以前,由于技术、成本等原因,焊接机器人国内伺服电机以直流无槽、直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防行业。用这种技术可以提高焊接质量,因而甚至试图用它来代替某些弧焊作业。在短距离内的运动时间也大为缩短。该公司近推出一种高度低的点焊机器人,用它来焊接车体下部零件。这种矮小的点焊机器人还可以与较高的机器人组装在一起,共同对车体上部进行加工,从而缩短了整个焊接生产线长度。国内生产的桑塔纳、帕萨特、别克、赛欧、波罗等后桥、副车架、摇臂、悬架、减振器等轿车底盘零件大都是以MIG焊接工艺为主的受力安全零件,主要构件采用冲压焊接,板厚平均为1.5~4mm,焊接主要以搭接、角接接头形式为主,焊接质量要求相当高,其质量的好坏直接影响到轿车的安全性能。应用机器人焊接后,大大提高了焊接件的外观和内在质量,并保证了质量的稳定性和降低劳动强度,改善了劳动环境。

电弧跟踪及自动再引弧功能
弧焊过程比点焊过程要复杂得多,工具中心点(TCP)弧焊机器人FANUC M-10iA,也就是焊丝端头的运动轨迹、焊枪姿态、焊接参数都要求精准控制。所以,弧焊用机器人除了前面所述的一般功能外,还必须具备一些适合弧焊要求的功能。
虽然从理论上讲,有5个轴的机器人就可以用于电弧焊,但是对复杂形状的焊缝,用5个轴的机器人会有困难。因此,除非焊缝比较简单,否则应尽量选用6轴机器人。
弧焊机器人除前面图2提及的在作"之"字形拐角焊或小直径圆焊缝焊接时,其轨迹应能贴近示教的轨迹之外,还应具备不同摆动样式的软件功能,供编程时选用,以便作摆动焊,而且摆动在每一周期中的停顿点处,机器人也应自动停止向前运动,以满足工艺要求。对于焊接机器人使用初期的故障现象,一开始工作人员都会感到非常棘手,这主要是源于对焊接机器人机理认识肤浅所至。此外,还应有接触寻位、自动寻找焊缝起点位置、电弧跟踪及自动再引弧功能等。

