






综上所述,本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,简要分析了各部件结构优化对离心风机金属叶轮稳定运行的影响。主要从集流器优化对离心风机金属叶轮稳定运行影响、窝壳优化对离心风机金属叶轮稳定运行影响、电机优化对离心风机金属叶轮稳定运行影响,以及叶片形状优化对通风机金属叶轮稳定运行影响四个方面进行分析,为保证金属叶轮的稳定运行提供技术支持。各部件结构优化对离心风机金属叶轮稳定运行的影响
集流器优化对通风机金属叶轮稳定运行的影响
集流器的工作原理是通过将气流均匀地送入叶轮进口截面,以达到提高通风机叶轮的效率以及风机整体性能的目的。集流器的结构形式对气流的流动损失以及金属叶轮的平稳运行都有很大影响,因此对集流器的结构优化是非常重要的。在设计集流器的结构时,应确保较大程度地符合金属叶轮附近气流的流动情况,同时还应保证集流器内气流的平稳运行。集流器的类型有很多种,常用的集流器是锥弧形集流器,锥弧形集流器的气流运行一般比较平稳,但是集流器喉部到叶轮进口阶段容易发生边界层分离现象,增加通风机的损失,导致离心风机效率降低。因此,必须优化集流器结构,通过减小集流器的锥度、增加喉部半径的方式,提高离心风机的效率,保证金属叶轮的平稳运行。
本文以通风机为研究对象,对4 种组合方式的消声蜗壳进行了试验测量,研究了每一种组合的降噪效果及对风机气动性能的影响。试验在符合ISO3745 标准的半消声室中进行,其四周墙壁及屋顶均装有消声尖劈,消声室截止频率100 Hz,本底噪声为26 dB( A) 。试验装置和测试系统按照***标准GB/T1236-2000《工业通风机用标准化风道进行性能试验》和GB/T2888-91《通风机和罗茨鼓风机噪声测量方法》的要求设计、制造、测试。通风机进气口端连接符合GB/T 1236 规定的风机性能试验进气试验装置。使用智能压力风速风量仪测出PL3 位置的静压和PL5 处的流量压差,然后再根据其他测量的数据算出风机全压和静压试验装置。
试验采用进口堵片方式调节流量,从大流量至小流量共选取8 个工况点,分别测试每个工况点的风机流量、压力、功耗和噪声。后计算风机标况下流量、全压、全压效率、总A 声级。本试验风机的结构简图,在风机蜗板和前后盖板上可分别固定穿孔钢板,穿孔板与蜗壳本体之间形成10 mm 的空腔,空腔内填充超细玻璃棉,形成消声蜗壳。以此形成4 种消声蜗壳组合: A 组合,周向蜗板有消声层;B 组合,蜗壳后盖板有消声层; C 组合,周向蜗板和后盖板有消声层; D 组合,周向蜗板和前盖板有消声层。选用的穿孔板采用板厚1 mm,孔径6 mm,穿孔率约为22%。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。
原通风机和A 型改进风机在点的噪声频谱图。根据风机参数,风机旋转噪声基频为760 Hz,由频谱图可看出在500 ~ 800
Hz 之间的低频噪声并没有降低,而1 250-2 000 Hz 之间吸声材料的降噪效果非常好,噪声下降明显。主要原因就是选用的吸声材料超细玻璃棉在高频率下,吸声系数较大,因此多孔吸声材料其吸声效果是高频优于低频的。消声蜗壳为B 组合形式时与原风机的出口A声级随流量变化的对比图。与原风机相比,在额定工况点A 声级降低约7 dB( A) ,在大流量工况,A 声级降低约5.0dB( A) ,在小流量工况下,A 声级降低约2.4 dB( A) 。
在125~ 500Hz 频段之间,风机A 声级有所增大,原因是后盖板加上消声材料后,叶轮轴向安装长度加长引起低频电机振动,噪声增加。在中高频段后盖板加消声材料的降噪效果很好,这种方式对于气动噪声及高频振动等起到很好的吸收作用,尤其是通风机包括电机的高频振动噪声过滤程度明显。消声蜗壳为C 组合形式时与原风机的出口A声级随流量变化的对比图。与原风机相比,在额定工况点总A 声级降低约7.2 dB( A) ,在大流量工况,A 声级降低约5.5 dB( A) ,在小流量工况,A 声级降低约3.5 dB( A) 。是消声蜗壳为D 组合形式时与原风机的出口A声级随流量变化的对比图。与原风机相比,在额定工况点,A 声级降低约5.14 dB( A) ,通风机在大流量工况,总A 声级降低约5.0 dB( A) ,在小流量工况,A 声级降低约2.0 dB( A) 。降噪效果稍微好于A 型改进风机,但不明显。可见前盖板加装消声材料降噪效果并不好,主要原因由于进口处有集流器,导致安装消声材料的面积相对于后盖板小很多,吸声效果不明显。
