




(1)在椭圆封头与圆筒的连接部位开孔, 孔边的应力沿圆周分布是较复杂的, 呈起伏变化。导热油加热反应釜的工艺设计通常,反应釜的工艺设计包括反应釜的容量、热负荷的确定以及传热面的计算,可以通过物料平衡、热量平衡与传热计算得出。它们各个方向的应力及各应力分量和应力强度等的变化情形基本是同步的, 即应力强度的部位其薄膜应力强度、薄膜应力 弯曲应力的应力强度也均是。为此按应力强度部位路径来评定其它两个应力强度的做法是可行的。
(2)从分析结果可看出, 孔边各方向的应力、应力分量、应力强度中薄膜应力占有的比重。为此对接管与封头、筒体的连接焊缝的内部质量检测是非常必要的, 应补充超声检测的要求, 目前对这类焊缝仅作表面检测是不的。
(3)根据分析设计标准, 对有限元结果进行强度评定, 结果表明按常规设计出的顶盖厚度不满足强度要求, 所以进行了内部贴补强圈的补强设计。所设计的反应釜顶盖结构不仅有效地防止了泄漏,避免事故的发生, 而且降低了设备成本。
高压反应釜的结构和技术参数
主要技术性能及参数
高压反应釜外形结构如图1 所示, 其主要技术
性能与参数如下:
功率 7.5kW
反应压力 0.5MPa(max)
液压控制系统压力 16MPa(max)
生产率200kg(以干胚乳片计)/ h整机外形尺寸4130mm(高)×1600mm(直径)质量2500kg.
结构特点
传动系统
由三相异步电动机和立式行星摆线针轮减速机组成, 安装在釜体上盖, 结构紧凑。经多次试验, 我们确认了搅拌转速, 可使釜内物料在较短的时间内充分完成改性反应。传动轴与上盖间采用聚四氟编织填料密封, 其耐腐蚀、耐磨、导热性好。
双相不锈钢反应釜的结构设计与其他材料的反应釜基本相同, 这里就不在详述。焊接接头设计 双相不锈钢的接头设计必须有助于完全焊透并避免在凝固的焊缝金属中存在未熔合的母材。本反应釜采用的是手工钨极气体保护焊接,这种焊接方法的质量与母材、焊丝质量及焊接工艺关系极大。切削加工而不采用砂轮打磨坡口, 以使焊接区厚度或间隙均匀。必须打磨时, 应特别注意坡口及其配合的均匀性。为了保证彻底熔化和焊透, 应当去掉任何打磨毛刺。
一般而言, 能保证焊缝完全焊透且将烧穿的***减到, 则设计就可以说是合理的。冷热加工 虽然双相不锈钢可以进行热加工, 但其允许的温度范围比较窄, 且容易产生碳化物和氮化物的析出, 改变金相***, 使其耐腐蚀性能大大下降。从化工生产的实际来说,反应难以避免会放热,使得热量分布不够均匀。因此, 双相不锈钢在热加工后, 再进行固溶处理。本设计采用冷加工工艺, 很多制造实践表明:双相不锈钢冷作硬化现象明显, 在工艺过程中应尽量减少变形次数, 减少工序量, 且要缩短工序衔接时间。
对化工生产中的反应釜温度控制与维护做了简单的论述,提出了控制和维护的策略。从化工生产的实际来说,反应釜作为重要设备,发挥着积极的作用。其实选择就是双相不锈钢2205,主要有以下两个原因:一是双相不锈钢在抗晶间腐蚀和应力腐蚀方面,特别是耐氯化物腐蚀的性能优于奥氏体不锈钢。其温度控制的效果如何对产品的质量以及产量有着很大的影响。因此,深度分析此课题,提出行之有效的控制和维护措施有着重要的意义。从化工生产的实际来说,作为生产系统的核心控制部分,反应釜炉温控制系统发挥着重要的作用。因为反应釜内反应环节会进行吸热和放热,具有时变性和非线性等特点,增加了温度控制的难度。目前来说,多采用自适应模糊PID 控制法和其他方法,能够增强温度的控制效果。