




第三代RTO采用旋转式分流导向,在炉膛内设置多个等份的陶瓷填料床,通过旋转换向阀的转动把有机废气导向各个蓄热床进行预热和氧化分解。
旋转式RTO主要由燃烧室、陶瓷填料床和旋转阀等组成。炉体分成12个陶瓷填料床,其功能分为5个进气室(预热区)、5个出气室(冷却区)、1个吹扫室和1个隔离室。废气分配阀由电机带动,作连续、匀速转动,在分配阀的作用下,废气缓慢在12个室之间依次通过。
废气经进气分配器进入预热区,使废气预热到一定温度后进入顶部的燃烧室,并完全氧化分解。净化后的高温气体离开燃烧室,进入冷却区,将热量传给陶瓷蓄热体,而气体被冷却,并通过气体分配器排出。冷却区的陶瓷蓄热体吸热,“储存”大量的热量(用于下个循环加热废气)。
如此不断地交替进行,废气在燃烧室内氧化分解,当废气中VOCs浓度超过一定值,氧化分解释放热量足以维持燃烧室的反应温度时,则不需要用燃料进行加热,的保证能量循环利用。
大量工程应用表明:旋转式RTO的VOCs的分解效率可达99.5%,热效率可达97%,其进出口温差20摄氏度左右,的降低了RTO运行中的热损失,保证了热能的二次回收利用。
旋转阀的平稳连续转动,对废气管道的压力影响仅为±25pa,对于生产光学材料的厂家来说极其重要。由于具有很高的分解效率,旋转式RTO的VOCs入口废气浓度可高达10g/m3。

工作原理:
该系统利用一层陶瓷材料来吸收废气中的热量,并利用捕获的热量来预热进气气流。系统无需任何补充燃料,使用VOCs作为燃料来源,就能持续地维持燃烧。由于其高热能回收率,该RTO更适用于浓度较低但流量较高的VOCs废气处理。
步骤一:RTO在初始阶段需要通过添加、柴油等燃料来达到燃烧温度。在该阶段,焚烧系统通过排气自动调整空气比例,直到燃烧反应达到平衡状态。随后,系统开始以接近99%的超来热氧化等废气。
步骤二:RTO从初始阶段(需外部空气和燃料补充)切换至运行阶段,直接处理废气。为了化回收热量,焚烧系统会通过气动阀的一系列切换来达到进气和出气的自动交替与循环。
系统组成:
该公司RTO含三种不同配置:一室设计、两室设计和三室设计,每种设计各有优势。“室”指的是存放热回收介质的陶瓷容器。
一室RTO:占地面积较小,初始采购成本低,但后续维护成本较高。单室式设计去除效率接近99%,但不能去除异味。
两室RTO:初始采购成本和维护成本都较低,去除效率约为98%-99%。
三室RTO:更适合焙烧流程,去除率在99%以上,但占地面积较大。

● 设备在厂内完全组装,接线和测试后出运。
● 底架安装固定式,处理风量47,313Nm3/hr (30,000SCFM)。每个***系统组处理风量值118,283Nm3/hr(75,000SCFM)。
● RTO的运行范围可达25%低限极限(LEL),并能在VOC浓度只有3%LEL时维持自燃烧,减少辅助燃料的使用量。
● 燃料调整串设计通过FM/TSSA/CGA认证。
● 低氮燃烧器可以在设计风量、没有挥发性有机气体导入的情况下维持系
● 基于可编程控制器(PLC)的控制具有数据采集和远程控制功能。
● 变频器(VFD)驱动可使系统在低废气量较低或者系统待机状态时低频运行。。
● 烘烤模式可以去除积压在设备内的有机黏性物质。
● 维修入口为铰链式门便于维修作业。
