1)从分子态氧(O2)和***(NO3-N) 作为电子受体的氧化产能数据分析,以 O2 作为电子受体的产能约为 NO3-N 的 1.5 倍,因此当系统中同时存在 O2 和 NO3-N 时,反硝化菌及普通异养菌将优先以 O2 为电子受体进行产能代谢。
2)氧的存在***了 PAOs 释磷所需的“厌氧压抑”环境,致使***以 O2 为终电子受体而***其发酵产酸作用,妨碍磷的正常释放,同时也将导致好氧异养菌与 PAOs 进行碳源竞争。
一般厌氧区的 DO 的质量浓度应严格控制在 0.2 mg/L 以下。从某种意义上来说***及 DO 残余干扰释磷或反硝化过程归根还是功能菌对碳源的竞争问题。
01 基于 SRT 矛盾的复合式
A²/O工艺在传统 A²/O工艺的好氧区投加浮动载体填料, 使载体表面附着生长自养硝化菌,而 PAOs 和反硝化菌则处于悬浮生长状态,这样附着态的自养硝化菌的 SRT 相对***,其硝化速率受短 SRT 排泥的影响较小,甚至在一定程度上得到强化。
悬浮污泥 SRT、填料投配比及投配位置的选择不仅要考虑硝化的增强程度,还要考虑悬浮态污泥 含量降低对系统反硝化和除磷的***影响。
载体填料的投配并不意味可大幅度增加系统排泥量,缩短悬浮污泥 SRT 以提高系统除磷效率;相反,SRT 的 缩短可能降低悬浮态污泥(MLSS)含量,从而影响 系统的反硝化效果,甚至造成除磷效果恶化。
研究表明,当悬浮污泥 SRT 控制为 5 d 时,复合式 A²/O 工艺的硝化效果与传统 A²/O工艺相比, 两者的硝化效果无明显差异,复合式 A²/O工艺的载 体填料不能完全***地发挥其硝化性能;若再降低悬浮污泥 SRT 则因系统悬浮污泥含量的降低致使 ***积累,影响厌氧磷的正常释放。
02 基于“碳源竞争”角度的工艺
解决传统 A²/O工艺碳源竞争及其***和 DO 残余干扰释磷或反硝化的问题,主要集中在 3 方面:
-
针对碳源竞争采取的解决策略,如补充外碳源、反硝化和释磷 重新分配碳源(如倒置 A²/O工艺)等;
-
解决***干扰释磷提出的工艺改革,如 JHB、UCT、MUCT 等工艺;
-
针对 DO 残余干扰释磷、反硝化的问题, 可在好氧区末端增设适当容积的“非曝气区”。
-