


多履带运输车的转向是将一组或两组转向履带运输车相对车架偏转一定角度,依靠地面对转向履带运输车的侧向力克服转向阻力矩来实现的。转向时机器行驶路径为曲线,这一点和滑移转向不同。同时,履带运输车,为保证履带运输车行走装置动力配置合理,工作可靠,多履带运输车行走装置在坡道行驶时通常不转向,因此在计算履带运输车驱动功率时一般仅分别考虑坡道行驶和平路转向两种工况。
在履带运输车行走装置的转向方式上,根据转向履带运输车的组数不同可分为两种:
1.正三支点履带运输车布置品字形,转向履带运输车沿车辆纵轴线对称布置,靠一组履带运输车进行转向;
2.侧三支点履带运输车布置品字形翻转°,转向履带运输车一前一后对称布置,两组履带参与转向。
履带运输车行走装置的转向可控制性较好,其轨迹仅取决于转向组元的偏转角度,全地形履带运输车,转向过程平稳,在进行长时间转向时基本没有制动功率损失。
多履带运输车行走装置转向组元及转向机构 在静止状态下,履带运输车转向阻力矩很大,一般很难偏转,只能在靠行走过程中逐步改变履带运输车的偏角来实现。多履带运输车行走装置一般设置成履带运输车单元或转向组元来实现转向见图和图,由专用的转向机构进行牵拉来克服地面的摩擦阻力。
履带运输车转向机构可以采用机械方式,如螺旋丝杆、钢丝拉绳等,由电机驱动的减速机或卷扬机驱动;也可以采用液压驱动,四不像履带运输车,由液压泵站对转向液压油缸提供动力进行驱动。
履带运输车行走装置转向组元及转向机构 液压油缸转向驱动系统的优点是结构重量轻、零部件布置紧凑,空间占用少,不需克服传动系的摩擦阻力,机件磨损小、便于维修,牵引力可通过调压液压系统压力很方便地进行调整,在气候适宜地区是优选方案,但缺点是需要高品质的液压油且不适合在寒冷地区使用,但在冬季气温允许的地方已经得到越来越多的应用。螺旋丝杆的优点是可以控制偏转角度,工作可靠;缺点是成本高,需要***的电机驱动和变减速机构。钢丝拉绳的优点是成本较低,具有广泛的地域适应性,特别在冬季寒冷的地区适应性强;缺点是偏转角度的控制较难实现,同时需要高可靠性的机构。





?履带运输车动力学性能



随着计算机技术的发展,描述履带运输车动力学性能的复杂微分方程组可以快速求解,因此可以把构成履带运输车的各个部件通过各种约束组合起来,运用多体系统动力学的理论和方法求解约束方程和动力学方程,即可获得履带运输车的动力学性能。国外履带运输车动力学发展较为成熟,根据研究的目的不同,建立了平稳性分析模型,轻型履带运输车,转向性分析模型和三维模型等。1976 年 Murphy N R 和 Ahlvin R B 提出了 NRMM模型,是较早的履带车模型。该模型将车体简化为刚体,将悬挂系统简化为平动弹簧阻尼元件,负重轮由周向均布的径向弹簧构成,只能作垂直运动,相邻负重轮轮心上也连接有弹簧,这样当一个负重轮相对车体有位移时,连接的弹簧将会使相邻的负重轮运动,从而体现履带对负重轮的托带作用。
履带运输车动力学性能 由于该模型细致的描述了履带运输车各个部件之间及负重轮与地面之间的相互作用关系,能够准确预估车辆的平稳性,因此被称为平稳性模型。1992 年 Ehlert W, Hug B 在试验的基础上对三类常见的转向模型—Hock 模型、IABG 模型以及 Kitano 模型进行了修正,能较好的履带运输车的转向性能,Hock 模型认转向摩擦力是由履带侧滑引起的,而 IABG 模型还考虑了转向时由于离心力引起的载荷转移,外侧履带摩擦力大于内侧等因素对转向力矩的影响,Kitano 模型不仅考虑了以上因素,还对转向时履带张力变化以及履带周向滑动的影响加以考虑。1994 年 Dhir A, Sankar S 建立了一个二维 2 N(2 为车身的垂直和俯仰,N为负重轮个数)个自由度的履带运输车模型,悬挂系统被简化为***的悬挂结构,弹簧、阻尼为线性或非线性,假定履带为无质量连续的带子,假定地面不变形,负重轮与履带板的接触模化为连续径向弹簧阻尼结构。1998 年 Choi J H 等人运用多体动力学理论提出了一个三维履带运输车模型,
履带运输车动力学性能 该模型主要是针对低速履带运输车,它将履带运输车分解为三个运动学上解耦的子系统,子系统是由车体、主动轮、诱导轮、托带轮构成,第二、三个子系统分别为左右两侧由刚性履带板通过转动副连接而成的履带环,该模型对行驶系的作用力进行了比较细致的描述。如在分析履带与主动轮的啮合力时,将履带板和主动轮齿的接触分为齿面接触和齿根接触。由于该模型对履带结构特征刻画得非常细致,计算量也相当大。
国内的履带运输车动力学研究始于 20 世纪八十年代,同样经历了二维模型到三维模型的发展过程。1980 年,北京工业学院魏宸官建立了履带运输车匀速转向时,转向的运动学和动力学参数间的关系,给出了履带运输车转向时动力学参数的求解方法。1987 年,吉林工业大学兰凤崇建立了履带式集材车四自由度动力学模型,包括车体和座椅垂直振动,车体的纵向和横向角振动,但没有考虑履带的作用。1993 年,工业计算所的居乃俊应用自行开发的车辆动力学分析与模拟软件 VDAS 对履带运输车的平顺性进行了模拟分析,证明了该软件的应用价值,此时一些通用机械动力学软件如 ADAMS、DADS、DRAM 等在国外已得到一定的应用,但是在国内由于计算机软、硬件环境的不足,应用较少。2002 年,北京理工大学韩宝坤,李晓雷等基于 DADS建立了履带运输车多体模型,并对其平稳性进行了分析。
履带运输车动力学性能 2004 年,北方车辆研究所王军基于 ADAMS/ATV 建立了履带运输车整车模型,在多种路面工况下进行了仿。2005 年,北京理工大学宋晗利用 RecurDyn 建立了履带运输车的多刚体动力学模型,分析了履带动态张紧力的变化情况。此后,主流多体多体动力学软件在国内均得到了广泛应用,其中以 ADAMS/ATV 的应用***为成熟,成为了目前履带运输车动力学分析的主要工具。


履带运输车行走装置的转向组元通常在其接地面中心的正上方设计成球铰,通过球形铰接副的球面连接转向组元,连同非转动支撑点组成三点稳定式结构支承上部装备质量。多履带运输车常见的结构组合和转向方式见下文。
1.侧三支点三履带运输车及其转向机构
履带运输车在多履带运输车行走装置中的结构形式,其承载质量一般不超过。底座支点布置成等腰三角形,底座各支承能将垂直载荷静定地传到地面,三个支承点的选择应保证机器在各种载荷下不致倾翻。图所示在侧三支点三履带运输车行走装置中,转向牵引电机驱动减速机,减速机的输出轴驱动螺旋式牵引丝杠,通过牵引臂牵拉点的前后运动来偏转履带运输车。牵引臂前端支承滚轮安装在固定履带运输车架轨道内,其前后滚动带动转向履带运输车偏转实现转向。
2.三支点三履带运输车行走装置除上述机构外,也有采用一个转向机构偏转前端一个履带运输车的正三角支承形式,后部两个固定履带运输车沿机器纵轴线对称排列。
多履带运输车常见的结构组合和转向方式 3.侧三支点六履带运输车及其转向机构
六履带运输车行走装置的支承质量一般在以内。底座仍采用对垂直载荷静定的三支点结构。图所示的转向机构中采用电机驱动减速机,由牵拉丝杠牵引侧向布置的前后履带运输车转向臂进行转向。这种机构形式简单,在气候适宜地区同样也可采用液压油缸进行牵引转向。
4.正三支点十二履带运输车及其转向机构
多履带运输车常见的结构组合和转向方式 图为采用电机驱动转向的三角形静定支承正三支点十二履带运输车行走装置。该行走装置具有六个箱形梁,每个箱形梁连接两个履带运输车,三个支承铰点下的三个肘形梁分别连接三个四履带运输车组。转向组元由四个履带运输车组成,作为整体一起转向;转弯时要操纵处于机器纵轴线上的转向履带运输车组元偏转来实现机器转弯,转向驱动由电机或液压油缸来实现。
全地形履带运输车-济宁欧科(在线咨询)-履带运输车由济宁欧科机械设备有限公司提供。“环氧地坪打磨机,固化地坪抛光机,道路划线机”就选济宁欧科机械设备有限公司(),公司位于:山东省济宁市任城区南张镇仙庄村,多年来,济宁欧科坚持为客户提供好的服务,联系人:张经理。欢迎广大新老客户来电,来函,亲临指导,洽谈业务。济宁欧科期待成为您的长期合作伙伴!

