***空调能量计是在固定式超声波流量计上加配一对温度传感器,通过采用热焓值热量计算公式而实现热量测量的;广泛应用于各种工业现场中液体的在线流量计量。传感器可分为外敷式、插入式、管段式等,以满足用户各种不同现场的使用需要。
东芝空调分户计量自控***空调能量计技术参数l
测量精度:优于1%;l 重 复 性:优于0.2%;
l 测量周期:500ms (每秒2次);
l 工作电压:AC220V/DC24V或AC8~30V;
l 测量流速范围:0~±32m/s;
l 可测介质温度范围-40℃~160℃l
l 适用管道材质:碳钢、不锈钢、铸铁、铜、水泥、PVC、铝等均匀、质密的管道,允许有衬里;
l 显 示:2×10背光型汉字液晶显示;可显示瞬时流量及正、负、净累积流量、流速等;
l 操 作:4×4轻触键盘
l 信号输出:电流信号:4mA~20mA或0mA~20 mA, 阻抗0~1KW,浮空,精度0.1% 。
频率信号 :1~9999Hz之间任选(OCT输出)。脉冲信号 :正、负、净流量及热量累计脉冲,继电器及OCT输出。报警信号 :继电器及OCT输出,近20种源信号可选。
l 数据接口 :RS232串行接口,可选配RS485或CAN总线。
其他功能 :记忆前64日/64月/5年的累积流量;记忆前64次上、断电时间、流量和流量管理功能。可选自动或手动补加累积量功能,记忆每天的工作状态。可编程批量(定量)控制器。 故障自诊断功能。***空调集中控制计费系统方便适用的批量操作,可以实现参数的设置和修改,轻松的远程集中控制等功能。特别是对欠费用户,上位软件可以发出指令停止其使用空调。 网络工作方式等。(须配备GPRS/G***模块可实现远程
红外线传感器是利用红外线为介质来进行数据处理的一种传感器。
红外传感器的种类
红外线是一种人类肉眼看不见的光,所以,它具有光的一切光线的所有特性。但同时,红外线还有一种还具有非常显著的热效应。所有高于对零度即-273℃的物质都可以产生红外线。
根据发出方式不同,红外传感器可分为主动式和被动式两种。
主动红外传感器的工作原理及特性
东芝空调分户计量自控主动红外传感器的发射机发出一束经调制的红外光束,被红外接收机接收,从而形成一条红外光束组成的警戒线。当遇到树叶、雨、小动物、雪、沙尘、雾遮挡则不应误报,人或相当体积的物品遮挡将发生误报。
主动红外探测器技术主要采用一发一收,属于线形防范,现在已经从开始的但光束发展到多光束,而且还可以双发双受,降低误报率,从而增强该产品的稳定性,可靠性。
由于红外线属于环境因素不相干性良好(对于环境中的声响、雷电、振动、各类人工光源及电磁干扰源,具有良好的不相干性)的探测介质;根据需要设定制热制冷模式按量收费,的报表格式自动生成,或者根据用户需求自定义报表格式。同时也是目标因素相干性好的产品(只有阻断红外射束的目标,才会触发误报),所以主动式红外传感器器将会得到进一步的推广和应用。
被动红外传感器器的工作原理及特性
被动红外传感器是靠探测***发射的红外线来进行工作的。传感器器收集外界的红外辐射进而聚集到红外传感器上。红外传感器通常采用热释电元件,这种元件在接收了红外辐射温度发出变化时就会向外释放电荷,检测处理后产生误报。
这种传感器是以探测***辐射为目标的。所以辐射敏感元件对波长为10μm左右的红外辐射必须非常敏感。为了对***的红外辐射敏感,在它的辐射照面通常覆盖有特殊的滤光片,使环境的干扰受到明显的控制作用。
被动红外传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释电元几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人进入探测区域内,***红外辐射通过部分镜而聚焦,从而被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而误报。
根据能量转换方式的不同,红外线传感器又可分为光子式和热释电式两种。
光子式红外传感器
光子式红外传感器是利用红外辐射的光子效应而进行工作的传感器。所谓光子效应,是指当有红外线入射到某些半导体材料上时,红外辐射中的光子流与半导体材料中的电子相互作用,改变了电子的能量状态,从而引起各种电学现象。
通过测量半导体材料中电子性质的变化,就可以知道相应红外辐射的强弱。光子探测器类型主要有内光电探测器、外光电探测器、自由载流子式探测器、QWIP阱式探测器等。
光子探测器的主要特点是灵敏度高、响应速度快,具有较高的响应频率,但缺点是探测波段较窄,一般工作于低温(为保持高灵敏度,常采用液氮或温差电制冷等方式,将光子探测器冷却至较低的工作温度)。
热释电式红外传感器
热释电式红外传感器是利用红外辐射的热效应引起元件本身的温度变化来实现某些参数的检测的,其探测率、响应速度都不如光子型传感器。但由于其可在室温下使用,灵敏度与波长无关,所以应用领域很广。2、东芝空调分户计量自控公司发展原则:聚焦用户智能家居还没有广泛应用于人们生活中,因此对于智能家居公司来说,要想更好的销售产品,就要注重用户,了解哪些用户需要智能家居设备,抓住用户需求,从而有针对性的销售,提高公司营销利益。利用铁电体热释电效应的热释电型红外传感器灵敏度很高,获得了广泛应用。
热释电效应某些绝缘物质受热时,随着温度的上升,在晶体两端将会产生数量相等而符号相反的电荷。这种由于热变化而产生的电极化现象称为热释电效应。热释电效应在近十年被用于热释电红外传感器中。能产生热释电效应的晶体称为热释电体,又称为热电元件。数据显示,目前我国智能门锁行业共有生产企业1300多家,近2800个品牌。热电元件常用的材料有单晶、压电陶瓷及高分子薄膜等。
热释电红外传感器的结构热释电红外传感器由以下四个主要部分构成:
①构成电路的铝基板、场效应晶体管(FET);
②具有热释电效应的陶瓷材料;
③ 限制入射红外波长的窗口材料;
④ 外壳TO—5型管帽和管座。
由于探测器元件单独使用时,存在着探测距离较短、获得的信号后续电路不易处理的不足,所以目前多选用红外组合件来探测。红外组合件由热释电红外传感器、透镜、测量转换电路和密封管壳构成]。透镜可以扩大探测范围,提高测量的灵敏度;测量转换电路可以完成滤波、放大等信号处理过程;密封管壳能防止因外界噪声引起的错误动作。这种组合件体积小、成本低、功能多样,所以应用广泛。系统自带有实时症状与监测功能。对于异常线路和长时间非工作线路提出异常警报提醒,以供及时检查。
红外传感器的应用
从目前应用的情况来看,红外传感器有如下几个优点:
1、环境适应性优于可见光,尤其是在夜间和恶劣天候下的工作能力;
2、隐蔽性好,一般都是被动接收目标的信号,比雷达和激光探测安全且保密性强,不易被干扰;
3、由于目标和背景之间的温差和发射率差形成的红外辐射特性进行探测,因而识别伪装目标的能力优于可见光;
4、与雷达系统相比,红外系统的体积小,重量轻,功耗低;根据红外传感器上述的性能特点,我们可以发展出多种不种的红外探测器。
利用其光效应:
1、光电导探测器:又称光敏电阻。半导体吸收能量足够大的光子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。
2、光伏探测器:主要利用p-n结的光生效应。能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。存在的结电场使空穴进入p区,电子进入n区,两部分出现电位差,外电路就有电压或电流信号。楼盘交房展示合作在楼盘处悬挂展板等展示品,设点展示,演示智能家居,因这段时间为装修高峰期。与光电导探测器比较,光伏探测器背景限探测率大40%,不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。
3、光发射-Schottky势垒探测器:金属和半导体接触,形成Schottky势垒,红外光子透过Si层被PtSi吸收,使电子获得能量跃迁至费米能级,留下空穴越过势垒进入Si衬底,PtSi层的电子被收集,完成红外探测。
4、阱探测器(QWIP):将两种半导体材料用人工方法薄层交替生长形成超晶格,在其界面有能带突变,使得电子和空穴被限制在低势能阱内,从而能量化形成阱。
利用阱中能级电子跃迁原理可以做红外探测器。因入射辐射中只有垂直于超晶格生长面的电极化矢量起作用,光子利用率低;阱中基态电子浓度受掺杂限制,效率不高;响应光谱区窄;低温要求苛刻。
利用其热效应:
1、液态的温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。
2、 热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。
3、 石英共振器非制冷红外成像列阵:利用共振频率对温度敏感的原理来实现红外探测。
4、测辐射热计:利用材料的电阻或介电常数的热敏效应—辐射引起温升改变材料电阻—用以探测热辐射。因半导体电阻有高的温度系数而应用多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。而将电子智能、机械智能等技术植入传统家具中的智能家具,则给市场更多的想象。如果室温超导成为现实,将是21世纪引人注目的一类探测器;
5、 热释电探测器:有些晶体,如***三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。
统噪声对环境及使用房间的影响不容忽视,如何对空调系统进行消声、隔声、吸声、减震,在实际工程设计和施工过程中,使得使用房间及建筑周边噪声达到规范要求,满足人们对环境舒适性要求。
一、东芝空调分户计量自控***空调系统噪声来源主要的噪声源有以下几个方面:
1、制冷机组的噪声与振动、冷却塔噪声与振动,此外还包括其辅助设备水泵、水处理等;
2、空气从送风口喷出形成风声;
3、空气在风管内流动摩擦振动产生的噪声;
4、冷冻水在冷冻水管内流动产生水流声及水管振动产生的噪声;
5、空调器及风机盘管等设备运转及设备振动产生的机械噪声;
6、外界其他噪声源与上述噪声源可能产生的共鸣声等等。空调系统的噪声主要来源于通风及空调系统。
二、***空调噪声控制方法
空调系统噪声控制涉及消声、隔声、吸声以及隔振等内容。空调噪声的传播方式包括空气传声与固体传声。固体声传播主要包括制冷机组、冷却塔、空调器、风机盘管、管道等设备振动的传播,空气声传播包括风管的噪声传播与末端噪声直接辐射等。
1、选择合适的低噪声设备从声源上控制噪声:
①采用合理的空调形式来降低噪声;
②减少风声及水流声,冷冻水流速控制在1。5m/s左右,支管风速应≤3。5m/s,主风管风速应≤4m/s,采用合适的风速及冷冻水流速;
③选用质量***的低噪声设备,对于制冷主机应选择振动相对较小压缩机,对于水泵应尽量选择≤450rpm转速的低转速泵,新风机设备、风机盘管设于公共场区或办公区、休息区内,因此必须选用质量好、噪声低的产品,其噪声可直接传到人群中。
2、空调系统消声
消声器是一种具有吸声内衬或特殊结构形式能有效降低噪声的气流管道,它既可以有效地降低噪声,东芝空调分户计量自控,又可以使气流顺利通过,通常需要在通风管道内安装消声器来降低噪声声压级。主要是为了控制空调机组等空调设备的噪声通过通风管道传到空调服务区及风道内气流噪声,在噪声控制技术中,消声器是应用广泛的降噪设备,空调系统送回风管道的消声,以及冷却塔进出风口的消声等,它被应用于空调机房、锅炉房、冷冻机房等设备机房进出风口的消声。出门越着急越乱,还一堆灯要关,空调、加湿器、卫生间浴霸也没关。
3、空调设备隔振措施
衰减振动的方法是消除振动源和接收者之间的刚性连接。控制空调系统设备的噪声,必须控制由空调机组、制冷设备振动传播的固体声,同时减低由通风管道传播的风机噪声和透过围护结构的设备噪声。只有这样,才能使空调用房达到预定的允许噪声控制标准。
设备隔振可以通过两种途径来控制:一是降低振动传递效率,二是降低振动源的振动,在振源处控制振动是有效的办法,但这种方法往往在现实工程中无法实现,因为它需要对振源设备进行重新设计或者改造,在振动传播途径上控制振动,常用的办法包括:增加振动传播途径的阻尼,如增加隔振软管等。它的目的主要是吸收振动传播的能量(转化为热量);增加弹簧隔振器或者橡胶垫。智能家居公司忌讳模仿,同一件产品通过模仿,出的设备功能一样,那公司没有拥有自己的产品,如何能更好发展呢。
目前常用的隔振软管有各种橡胶软连接和不锈钢波纹软管。橡胶软管具有很好的隔振降噪效果,缺点是其使用受到介质温度、压力的限制,同时耐腐蚀性较差。不锈钢波纹管由于能耐高温、高压和腐蚀性介质,和具有良好的隔振效果,因此应用较广。计费功能:计费功能可以统计每个***计费用户的用量及费用,将一户多台风机盘管汇总计量,并实时显示剩余用时、充值时长、累计用时等。但它造价较高,在空调管道隔振控制中,对于低温、低压的水管可以采用各种橡胶软管,而对冷冻机、空压机和高压水泵则需选用不锈钢波纹管。
4、空调设备隔声
制冷主机、冷冻水泵、冷却水泵等噪声较大的制冷主机、冷却水泵应尽量设置在地下室,从而减小对地面上的使用房间的影响,由机房的墙体、地下楼板对声波进行隔离;如果只能设置在地面上,更应设置设备机房、隔音墙。
①组合墙隔声。组合墙可以通过中间留空气层提高隔声量。声波入射到第壹层墙板时,使墙板发生振动,空气间层可以看作是连接墙板的“弹簧”,此振动通过空气层传至第二层墙板。
②单层匀质实墙隔声。墙的单位面积质量越大,隔声效果越好,在主要声频范围内,单层匀质实墙隔声性能主要受质量控制,单位面积质量每增加1倍,隔声量增加6dB。因此,墙体的选择应尽量选择厚重的,以提高墙体隔声量。
东芝空调分户计量自控由西安弗戈智能科技有限公司提供。西安弗戈智能科技有限公司拥有很好的服务与产品,不断地受到新老用户及业内人士的肯定和信任。前瞻产业研究院发布的《中国智能家居设备行业市场前瞻与***报告》指出,2018年中国智能家居规模将达到1800亿元,约合260亿美元。我们公司是商盟认证会员,点击页面的商盟***图标,可以直接与我们***人员对话,愿我们今后的合作愉快!